Home
Class 12
MATHS
Find lim(xto0) [x]((e^(1//x)-1)/(e^(1//x...

Find `lim_(xto0) [x]((e^(1//x)-1)/(e^(1//x)+1)),` (where `[.]` represents the greatest integer funciton).

Text Solution

AI Generated Solution

To solve the limit problem, we need to evaluate the limit of the expression as \( x \) approaches \( 0 \) from both the right (0+) and the left (0-). The expression we are dealing with is: \[ \lim_{x \to 0} \left[ x \cdot \frac{e^{1/x} - 1}{e^{1/x} + 1} \right] \] where \([.]\) represents the greatest integer function. ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Solved Examples|15 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.1|10 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

lim_(xto0) [(1-e^(x))(sinx)/(|x|)] is (where [.] represents the greatest integer function )

lim_(xto1) [cosec(pix)/(2)]^(1//(1-x)) (where [.] represents the greatest integer function) is equal to

Prove that [lim_(xto0) (tan^(-1)x)/(x)]=0, where [.] represents the greatest integer function.

lim_(xto0)((e^(x)-1)/x)^(1//x)

Evalute [lim_(xto0) (sin^(-1)x)/(x)]=1 , where [*] represets the greatest interger function.

Evaluate lim_(xto2^(+)) ([x-2])/(log(x-2)), where [.] represents the greatest integer function.

The value of lim_(xto0) ([(100x)/(sinx)]+[(99sinx)/(x)]) (where [.] represents the greatest integral function) is

lim_(xto0) [(sin(sgn(x)))/((sgn(x)))], where [.] denotes the greatest integer function, is equal to

Prove that [lim_(xto0) (sinx)/(x)]=0, where [.] represents the greatest integer function.

lim_(xto0) [min(y^(2)-4y+11)(sinx)/(x)] (where [.] denotes the greatest integer function) is