Home
Class 12
MATHS
Evaluate lim(xto0) (sinx-x)/(x^(3))....

Evaluate `lim_(xto0) (sinx-x)/(x^(3)).`

Text Solution

AI Generated Solution

To evaluate the limit \( \lim_{x \to 0} \frac{\sin x - x}{x^3} \), we can use the Taylor series expansion for \( \sin x \). ### Step-by-step Solution: 1. **Recall the Taylor Series Expansion**: The Taylor series expansion of \( \sin x \) around \( x = 0 \) is: \[ \sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Solved Examples|15 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.1|10 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(xto0) (2sinx-sin2x)/(x^(3))

Evaluate lim_(xto0)(tanx-sinx)/(x^(3)).

Evaluate lim_(xto0)|x|^(sinx)

Evaluate lim_(xto0) (e^(x)-1-x)/(x^(2)).

Evaluate lim_(xto0) (logcosx)/(x)

Evaluate lim_(xto0)(tan2x-sin2x)/(x^(3))

Evaluate lim_(xto0) (1-cos2x)/x^(2)

Evaluate : lim_(xto 0) (e^(sinx)-1)/x

Evaluate lim_(xto0) (tan2x-x)/(3x-sinx).

Evaluate lim_(xto0) (sinx-sina)/(sqrt(x)-sqrt(a))