Home
Class 12
MATHS
Prove that [lim(xto0) (sinx)/(x)]=0, whe...

Prove that `[lim_(xto0) (sinx)/(x)]=0,` where `[.]` represents the greatest integer function.

Text Solution

Verified by Experts

See the graphs of y=x and `sin x` in the following figure.

From the figure when `xto0^(+)`,graph of y=x is above the graph of `y=sinx`
i.e.,`" "sinxltx" or " (sinx)/(x)lt1`
`implies" "underset(xto0^(+))lim(sinx)/(x)=1^(1-)`
`implies" "[underset(xto0^(+))lim(sinx)/(x)]=0`
When `xto0^(-)`, graph of y=x is below the graph of `y=sinx`
i.e., `sinxltx" or " (sinx)/(x)lt1" "`(as x is negative)
`implies" "underset(xto0^(-))lim(sinx)/(x)=1^(-)`
`implies" "[underset(xto0^(-))lim(sinx)/(x)]=0`
Thus, `[underset(xto0^(-))lim(sinx)/(x)]=0`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Solved Examples|15 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.1|10 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Prove that [lim_(xto0) (tan^(-1)x)/(x)]=0, where [.] represents the greatest integer function.

Evaluate : [lim_(x to 0) (sin x)/(x)] , where [*] represents the greatest integer function.

Evalute [lim_(xto0) (sin^(-1)x)/(x)]=1 , where [*] represets the greatest interger function.

Evaluate : [lim_(x to 0) (tan x)/(x)] , where [*] represents the greatest integer function.

Prove that [lim_(xrarr0) (sinx.tanx)/(x^(2))]=1 ,where [.] represents greatest integer function.

Evaluate: [("lim")_(xto0)(tanx)/x] where [dot] represents the greatest integer function

Prove that lim_(xto2) [x] does not exists, where [.] represents the greatest integer function.

lim_(xto0) [(1-e^(x))(sinx)/(|x|)] is (where [.] represents the greatest integer function )

Evaluate lim_(xto2^(+)) ([x-2])/(log(x-2)), where [.] represents the greatest integer function.

Evaluate: ("lim")_(xvec0)(sinx)/x,w h e r e[dot] represents the greatest integer function.