Home
Class 12
MATHS
Prove that [lim(xto0) (tan^(-1)x)/(x)]=0...

Prove that `[lim_(xto0) (tan^(-1)x)/(x)]=0,` where `[.]` represents the greatest integer function.

Text Solution

AI Generated Solution

To prove that \(\lim_{x \to 0} \frac{\tan^{-1} x}{x} = 0\) and that the greatest integer function \(\lfloor \lim_{x \to 0} \frac{\tan^{-1} x}{x} \rfloor = 0\), we will analyze the limit from both sides (right-hand limit and left-hand limit). ### Step 1: Analyze the right-hand limit as \(x\) approaches 0 from the positive side We start by considering the limit: \[ \lim_{x \to 0^+} \frac{\tan^{-1} x}{x} \] We know that \(\tan^{-1} x < x\) for \(x > 0\) and close to 0. Therefore, we can write: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Solved Examples|15 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.1|10 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evalute [lim_(xto0) (sin^(-1)x)/(x)]=1 , where [*] represets the greatest interger function.

Prove that [lim_(xto0) (sinx)/(x)]=0, where [.] represents the greatest integer function.

Evlute [limt_(x to 0)(tan^(-1)x)/(x)] , where [*] re[resemts the greatest integer function.

Evaluate : [lim_(x to 0) (tan x)/(x)] , where [*] represents the greatest integer function.

Evaluate: [("lim")_(xrarr0)(tan^(-1)x)/x], where [.]represent the greatest integer function

Evaluate : [lim_(x to 0) (sin x)/(x)] , where [*] represents the greatest integer function.

lim_(xto0) [(1-e^(x))(sinx)/(|x|)] is (where [.] represents the greatest integer function )

Evaluate: [("lim")_(xto0)(tanx)/x] where [dot] represents the greatest integer function

Prove that [lim_(xrarr0) (sinx.tanx)/(x^(2))]=1 ,where [.] represents greatest integer function.

Evaluate lim_(xto2^(+)) ([x-2])/(log(x-2)), where [.] represents the greatest integer function.