Home
Class 12
MATHS
If L= lim(xto0) (sin2x+asinx)/(x^(3)) is...

If `L= lim_(xto0) (sin2x+asinx)/(x^(3))` is finite, then find the value of a and L.

Text Solution

AI Generated Solution

To solve the limit \( L = \lim_{x \to 0} \frac{\sin 2x + a \sin x}{x^3} \) and find the values of \( a \) and \( L \), we can follow these steps: ### Step 1: Rewrite the expression using trigonometric identities We know that \( \sin 2x = 2 \sin x \cos x \). Therefore, we can rewrite the limit as: \[ L = \lim_{x \to 0} \frac{2 \sin x \cos x + a \sin x}{x^3} \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Solved Examples|15 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.1|10 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

If L=lim_(x->0)(sin2x+asinx)/(x^3) is finite, then find the value of a and L

If lim_(xrarr0)(sin2x-asinx)/(x^(3)) exists finitely, then the value of a is

Evaluate lim_(xto0) (2sinx-sin2x)/(x^(3))

Evaluate lim_(xto0) (sinx-x)/(x^(3)).

If lim_(xto0) (1+ax+bx^(2))^(2//x)=e^(3) , then find the values of a and b.

Evaluate lim_(xto0)(tan2x-sin2x)/(x^(3))

Evaluate lim_(xto0)(tanx-sinx)/(x^(3)).

If lim_(xrarr0)(sin2x-a sin x)/(((x)/(3))^(3))=L exists finitely, then the absolute value of L is equal to

If lim_(xto0) ((4x-1)^(1/3)+a+bx)/(x)=1/3 then find the values of a and b.

lim_(xto0) (sin(picos^(2)x))/(x^(2)) is equal to