Home
Class 12
MATHS
Let P(n)=a^(P(n-1))-1,AA n=2,3,..., and ...

Let `P_(n)=a^(P_(n-1))-1,AA n=2,3,...,` and let `P_(1)=a^(x)-1,` where `ainR^(+).` Then evaluate `lim_(xto0) (P_(n))/(x).`

Text Solution

Verified by Experts

Clearly, if `P_(k)to0,` then `P_(k+1)to0.`
Now, as `xto0,` we get `P_(1)to0` or `P_(2),P_(3),P_(4),…,P_(n)to0`. Therefore,
`underset(xto0)lim(P_(n))/(x)=underset(xto0)lim(P_(n))/(P_(n-1))(P_(n-1))/(P_(n-2))...(P_(1))/(x)`
Now, `underset(xto0)lim(P_(k))/(P_(k-1))=underset(xto0)lim(a^(P_(k-1))-1)/(P_(k-1)) =1n" "a`
`:. " "" Required limit "=(ln" "a)^(n)`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Solved Examples|15 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.1|10 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Let p_n=a^(P_(n-1))-1,AAn=2,3,... ,a n d l e tP_1=a^x-1, where a in R^+dot Then evaluate ("lim")_(xvec0)(P_n)/x

Let a_1=1 , a_n=n(a_(n-1)+1) for n=2,3,... where P_n=(1+1/a_1)(1+1/a_2)(1+1/a_3)....(1+1/a_n) then lim_(nrarroo)P_n=

If "^(2n+1)P_(n-1):^(2n-1)P_n=3:5, then find the value of n .

Let int_x^(x+p)f(t)dt be independent of x and I_1=int_0^p f(t) dt , I_2 = int_(10)^(p^n+10) f(z) dz for some p , where n in N . Then evaluate (I_2)/(I_1) .

For n in N, let f_(n) (x) = tan ""(x)/(2) (1+ sec x ) (1+ sec 2x) (1+ sec 4x)……(1+ sec 2 ^(n)x), the lim _(xto0) (f _(n)(x))/(2x) is equal to :

If ""^(2n-1)P_(n): ""^(2n+1)P_(n-1)=22:7 , find n.

The value of lim_(xto0)((1^(x)+2^(x)+3^(x)+…………+n^(x))/n)^(a//x) is

Evaluate lim_(ntooo) (n^(p)sin^(2)(n!))/(n+1),"wher "0ltplt1.

Let S_(n)=1+2+3+...+n " and " P_(n)=(S_(2))/(S_(2)-1).(S_(3))/(S_(3)-1).(S_(4))/(S_(4)-1)...(S_(n))/(S_(n)-1) , where n inN,(nge2) Then underset(ntooo)limP_(n) =__________.

Let int_x^(x+p)f(t)dt be independent of xa n dI_1=int_0^pf(t)dt ,I_2=int_(10)^(p^n+10)f(z)dz for some p , where n in Ndot Then evaluate (l_2)/(l_1)dot