Home
Class 12
MATHS
If f(n)=lim(xto0) {(1+"sin"(x)/(2))(1+"s...

If `f(n)=lim_(xto0) {(1+"sin"(x)/(2))(1+"sin"(x)/(2^(2)))...(1+"sin"(x)/(2^(n)))}^((1)/(x))` then find `lim_(ntooo) f(n).`

Text Solution

AI Generated Solution

To solve the problem, we need to find the limit of the function \( f(n) \) as \( n \) approaches infinity, where: \[ f(n) = \lim_{x \to 0} \left( \left(1 + \frac{\sin x}{2}\right) \left(1 + \frac{\sin x}{2^2}\right) \cdots \left(1 + \frac{\sin x}{2^n}\right) \right)^{\frac{1}{x}} \] ### Step-by-Step Solution: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Solved Examples|15 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.1|10 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(xto0) (1-cos2x)/x^(2)

Evaluate lim_(xto pi/2)(1-"sin"x)^2/((pi/2-x)^(2))

Evaluate lim_(xto0) {1^(1//sin^(2)x)+2^(1//sin^(2)x)+...+n^(1//sin^(2)x)}^(sin^(2)x) .

lim_(n->oo)sin(x/2^n)/(x/2^n)

If f(a)=lim_(xto2)(sin^(x)a+cos^(x)a)^((1)/((x-2)))" for "ain[0,(pi)/(2)], then

lim_(xto0) (sin(picos^(2)x))/(x^(2)) is equal to

Evaluate lim_(xto0) ((1)/(x^(2))-(1)/(sin^(2)x)).

lim_(xto0)((a+x)^2sin(a+x)-a^2sina)/x

lim_(xto(pi)) (1-sin(x/2))/(cos(x/2)(cos(x/4)-sin(x/4)))

Evaluate lim_(xto0) (cos^(-1)((1-x^(2))/(1+x^(2))))/(sin^(-1)x).