Home
Class 12
MATHS
Let f(x) be a twice-differentiable funct...

Let `f(x)` be a twice-differentiable function and `f''(0)=2.` Then evaluate `lim_(xto0) (2f(x)-3f(2x)+f(4x))/(x^(2)).`

Text Solution

AI Generated Solution

To evaluate the limit \[ \lim_{x \to 0} \frac{2f(x) - 3f(2x) + f(4x)}{x^2}, \] given that \( f''(0) = 2 \), we will use Taylor series expansion around \( x = 0 \). ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Solved Examples|15 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.1|10 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Let f(x) be a twice-differentiable function and f"(0)=2. The evaluate: ("lim")_(xvec0)(2f(x)-3f(2x)+f(4x))/(x^2)

Let f(x) be a differentiable function in the interval (0, 2) then the value of int_(0)^(2)f(x)dx

If f(x) is a twice differentiable function such that f(0)=f(1)=f(2)=0 . Then

Let f (x) be twice differentialbe function such that f'' (x) gt 0 in [0,2]. Then :

If f (x) is a thrice differentiable function such that lim _(xto0)(f (4x) -3 f(3x) +3f (2x) -f (x))/(x ^(3))=12 then the vlaue of f '(0) equais to :

If f (x) is a thrice differentiable function such that lim _(xto0)(f (4x) -3 f(3x) +3f (2x) -f (x))/(x ^(3))=12 then the vlaue of f '''(0) equais to :

Let f''(x) be continuous at x = 0 and f"(0) = 4 then value of lim_(x->0)(2f(x)-3f(2x)+f(4x))/(x^2)

For a differentiable function f(x) , if f'(2)=2 and f'(3)=1 , then the value of lim_(xrarr0)(f(x^(2)+x+2)-f(2))/(f(x^(2)-x+3)-f(3)) is equal to

STATEMENT - 1 : Let f be a twice differentiable function such that f'(x) = g(x) and f''(x) = - f (x) . If h'(x) = [f(x)]^(2) + [g (x)]^(2) , h(1) = 8 and h (0) =2 Rightarrow h(2) =14 and STATEMENT - 2 : h''(x)=0

Let f (x) be a twice differentiable function defined on (-oo,oo) such that f (x) =f (2-x)and f '((1)/(2 )) =f' ((1)/(4))=0. Then int _(-1) ^(1) f'(1+ x ) x ^(2) e ^(x ^(2))dx is equal to :