Home
Class 12
MATHS
Evaluate lim(xto0) (e^(x)-1-x)/(x^(2))....

Evaluate `lim_(xto0) (e^(x)-1-x)/(x^(2)).`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 0} \frac{e^x - 1 - x}{x^2}, \] we will follow these steps: ### Step 1: Direct Substitution First, we will substitute \( x = 0 \) directly into the expression. \[ e^0 - 1 - 0 = 1 - 1 - 0 = 0, \] and the denominator becomes \( 0^2 = 0 \). Since we have the indeterminate form \( \frac{0}{0} \), we need to use another method. **Hint:** When you get \( \frac{0}{0} \), consider using Taylor series expansion or L'Hôpital's Rule. ### Step 2: Taylor Series Expansion We can use the Taylor series expansion for \( e^x \) around \( x = 0 \): \[ e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots \] Subtracting \( 1 \) and \( x \) from both sides gives: \[ e^x - 1 - x = \frac{x^2}{2} + \frac{x^3}{6} + \cdots \] **Hint:** Use the series expansion to simplify the numerator. ### Step 3: Substitute the Expansion into the Limit Now, substitute the expansion into the limit: \[ \lim_{x \to 0} \frac{\frac{x^2}{2} + \frac{x^3}{6} + \cdots}{x^2} \] **Hint:** Factor out \( x^2 \) from the numerator. ### Step 4: Simplify the Expression We can factor \( x^2 \) out of the numerator: \[ \lim_{x \to 0} \frac{x^2 \left(\frac{1}{2} + \frac{x}{6} + \cdots\right)}{x^2} \] This simplifies to: \[ \lim_{x \to 0} \left(\frac{1}{2} + \frac{x}{6} + \cdots\right) \] **Hint:** Evaluate the limit by substituting \( x = 0 \) into the simplified expression. ### Step 5: Evaluate the Limit Now, substituting \( x = 0 \): \[ \frac{1}{2} + 0 + \cdots = \frac{1}{2} \] Thus, the limit is: \[ \lim_{x \to 0} \frac{e^x - 1 - x}{x^2} = \frac{1}{2}. \] ### Final Answer \[ \boxed{\frac{1}{2}}. \]

To evaluate the limit \[ \lim_{x \to 0} \frac{e^x - 1 - x}{x^2}, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.5|12 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.6|9 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.3|15 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate : lim_(xto 0) (e^(sinx)-1)/x

Evaluate lim_(xto0) (e^(x^(2))-cosx)/(x^(2))

Evaluate lim_(xto0) (e^(x)+e^(-x)-2)/(x^(2))

Evaluate : lim_(xto0) (e^(x) -e^(-x))/x

Evaluate : lim_(xto0) (a^(x)-b^(x))/x

Evaluate lim_(xto0) (sinx-x)/(x^(3)).

lim_(xto0)((e^(x)-1)/x)^(1//x)

Evaluate lim_(xto0) (e^(x)-e^(-x)-2x)/(x-sinx).

Evaluate lim_(xto0) (x(e^(x)-1))/(1-cosx) is equal to

Evaluate lim_(xto0) (cos^(-1)((1-x^(2))/(1+x^(2))))/(sin^(-1)x).