Home
Class 12
MATHS
Evaluate lim(xto0) (e^(x)-e^(-x)-2x)/(x-...

Evaluate `lim_(xto0) (e^(x)-e^(-x)-2x)/(x-sinx).`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 0} \frac{e^x - e^{-x} - 2x}{x - \sin x}, \] we will follow these steps: ### Step 1: Substitute \( x = 0 \) First, we substitute \( x = 0 \) into the expression to check if it results in an indeterminate form. \[ e^0 - e^{-0} - 2(0) = 1 - 1 - 0 = 0 \] \[ 0 - \sin(0) = 0 - 0 = 0 \] This gives us the indeterminate form \( \frac{0}{0} \). ### Step 2: Apply Taylor Series Expansion Since we have an indeterminate form, we can use the Taylor series expansions for \( e^x \) and \( \sin x \) around \( x = 0 \). The Taylor series expansion for \( e^x \) is: \[ e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots \] The Taylor series expansion for \( e^{-x} \) is: \[ e^{-x} = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \cdots \] Subtracting these two expansions: \[ e^x - e^{-x} = \left(1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots\right) - \left(1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \cdots\right) \] This simplifies to: \[ e^x - e^{-x} = 2x + \frac{2x^3}{3!} + \cdots \] ### Step 3: Substitute in the Numerator Now we substitute this result into the numerator of our limit: \[ e^x - e^{-x} - 2x = \left(2x + \frac{2x^3}{3!} + \cdots\right) - 2x = \frac{2x^3}{3!} + \cdots \] ### Step 4: Expand \( \sin x \) Next, we expand \( \sin x \): \[ \sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots \] Now substituting this into the denominator: \[ x - \sin x = x - \left(x - \frac{x^3}{3!} + \cdots\right) = \frac{x^3}{3!} - \frac{x^5}{5!} + \cdots \] ### Step 5: Substitute into the Limit Now we substitute our results back into the limit: \[ \lim_{x \to 0} \frac{\frac{2x^3}{3!} + \cdots}{\frac{x^3}{3!} - \frac{x^5}{5!} + \cdots} \] ### Step 6: Factor out \( x^3 \) Factoring out \( x^3 \) from both the numerator and denominator: \[ = \lim_{x \to 0} \frac{2 + \cdots}{1 - \frac{x^2}{5!} + \cdots} \] ### Step 7: Evaluate the Limit As \( x \to 0 \), the higher-order terms vanish: \[ = \frac{2}{1} = 2 \] ### Final Answer Thus, the limit is: \[ \boxed{2} \]

To evaluate the limit \[ \lim_{x \to 0} \frac{e^x - e^{-x} - 2x}{x - \sin x}, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.5|12 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.6|9 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.3|15 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate : lim_(xto0) (e^(x) -e^(-x))/x

Evaluate lim_(xto0) (e^(x)-e^(xcosx))/(x+sinx).

Evaluate lim_(xto0) (e^(x)+e^(-x)-2)/(x^(2))

Evaluate : lim_(xto0) (a^(x)-b^(x))/x

Evaluate lim_(xto0) (e^(x)-1-x)/(x^(2)).

Evaluate : lim_(xto8)(e^(x)-e^(8))/(x-8)

Evaluate lim_(xto0)|x|^(sinx)

Evaluate lim_(xto0)(3^(2x)-2^(3x))/(x).

Evaluate : lim_(xto 0) (e^(sinx)-1)/x

Evaluate lim_(xto0) (e^(x^(2))-cosx)/(x^(2))