Home
Class 12
MATHS
If lim(xto0) (1-cosx)/(e^(ax)-bx-1)=2 th...

If `lim_(xto0) (1-cosx)/(e^(ax)-bx-1)=2` then find the values of a and b.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem, we need to find the values of \( a \) and \( b \) such that: \[ \lim_{x \to 0} \frac{1 - \cos x}{e^{ax} - bx - 1} = 2 \] ### Step 1: Identify the form of the limit First, we evaluate the limit as \( x \) approaches 0. - The numerator \( 1 - \cos(0) = 1 - 1 = 0 \). - The denominator \( e^{a \cdot 0} - b \cdot 0 - 1 = 1 - 0 - 1 = 0 \). Since both the numerator and denominator approach 0, we have a \( \frac{0}{0} \) indeterminate form, which allows us to apply L'Hôpital's Rule. ### Step 2: Apply L'Hôpital's Rule According to L'Hôpital's Rule, we differentiate the numerator and the denominator separately: - The derivative of the numerator \( 1 - \cos x \) is \( \sin x \). - The derivative of the denominator \( e^{ax} - bx - 1 \) is \( ae^{ax} - b \). Thus, we can rewrite the limit as: \[ \lim_{x \to 0} \frac{\sin x}{ae^{ax} - b} \] ### Step 3: Evaluate the new limit Now we substitute \( x = 0 \): - The numerator becomes \( \sin(0) = 0 \). - The denominator becomes \( ae^{a \cdot 0} - b = a \cdot 1 - b = a - b \). This gives us another \( \frac{0}{0} \) form if \( a = b \). Therefore, we set: \[ a - b = 0 \quad \Rightarrow \quad a = b \quad \text{(Equation 1)} \] ### Step 4: Differentiate again Since we have \( a = b \), we differentiate again. The new limit is: \[ \lim_{x \to 0} \frac{\cos x}{a \cdot ae^{ax}} = \frac{\cos(0)}{a^2} = \frac{1}{a^2} \] ### Step 5: Set the limit equal to 2 We know from the problem statement that this limit equals 2: \[ \frac{1}{a^2} = 2 \] ### Step 6: Solve for \( a \) From the equation \( \frac{1}{a^2} = 2 \), we can solve for \( a^2 \): \[ a^2 = \frac{1}{2} \] Taking the square root gives: \[ a = \pm \frac{1}{\sqrt{2}} \] ### Step 7: Find \( b \) Since we established that \( a = b \), we have: \[ b = \pm \frac{1}{\sqrt{2}} \] ### Final Answer Thus, the values of \( a \) and \( b \) are: \[ a = b = \frac{1}{\sqrt{2}} \quad \text{or} \quad a = b = -\frac{1}{\sqrt{2}} \]

To solve the limit problem, we need to find the values of \( a \) and \( b \) such that: \[ \lim_{x \to 0} \frac{1 - \cos x}{e^{ax} - bx - 1} = 2 \] ### Step 1: Identify the form of the limit First, we evaluate the limit as \( x \) approaches 0. ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.5|12 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.6|9 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.3|15 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

If lim_(xto0) (ae^(x)-b)/(x) =2, then find the values of a and b.

If lim_(xto0) ((4x-1)^(1/3)+a+bx)/(x)=1/3 then find the values of a and b.

If lim_(xto0) (1+ax+bx^(2))^(2//x)=e^(3) , then find the values of a and b.

Evaluate lim_(xto0) (1-cos2x)/x^(2)

Evaluate lim_(xto0) (cosx)^(cotx).

If L=lim_(xto0) (e^(-x^(2)//2)-cosx)/(x^(3)sinx) , then the value of 1//(3L) is ________.

lim_(xto0)((e^(x)-1)/x)^(1//x)

If lim_(xto1) (1+ax+bx^(2))^((e)/((x-1)))=e^(3) , then the value of bc is _________.

Slove lim_(xto0)((1+x)^(1//x)-e)/x

Evaluate lim_(xto0) (1-cosmx)/(1-cosnx).