Home
Class 12
MATHS
Find the values of a and b in order that...

Find the values of a and b in order that
`lim_(xto0) (x(1+acosx)-bsinx)/(x^(3))=1.`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \( \lim_{x \to 0} \frac{x(1 + a \cos x) - b \sin x}{x^3} = 1 \), we need to find the values of \( a \) and \( b \). Here’s a step-by-step solution: ### Step 1: Identify the form of the limit As \( x \to 0 \): - \( \cos x \to 1 \) - \( \sin x \to 0 \) Thus, substituting \( x = 0 \) into the expression gives: \[ \frac{0(1 + a \cdot 1) - b \cdot 0}{0^3} = \frac{0}{0} \] This is an indeterminate form \( \frac{0}{0} \). **Hint:** When you encounter \( \frac{0}{0} \), consider using L'Hôpital's Rule. ### Step 2: Apply L'Hôpital's Rule Since we have an indeterminate form, we differentiate the numerator and the denominator separately. **Numerator:** \[ \frac{d}{dx}[x(1 + a \cos x) - b \sin x] = 1 + a \cos x - b \cos x + ax \sin x \] **Denominator:** \[ \frac{d}{dx}[x^3] = 3x^2 \] Now, we can rewrite the limit: \[ \lim_{x \to 0} \frac{1 + a \cos x - b \cos x + ax \sin x}{3x^2} \] ### Step 3: Substitute \( x = 0 \) again Substituting \( x = 0 \): \[ \frac{1 + a \cdot 1 - b \cdot 1 + a \cdot 0 \cdot 0}{3 \cdot 0^2} = \frac{1 + a - b}{0} \] This is still an indeterminate form \( \frac{1 + a - b}{0} \). **Hint:** If you still get \( \frac{0}{0} \), apply L'Hôpital's Rule again. ### Step 4: Differentiate again Differentiate the new numerator and denominator again. **Numerator:** \[ \frac{d}{dx}[1 + a \cos x - b \cos x + ax \sin x] = -a \sin x + b \sin x + a \sin x + ax \cos x \] This simplifies to: \[ (-a + b + a)x \sin x + a \sin x \] **Denominator:** \[ \frac{d}{dx}[3x^2] = 6x \] Now we rewrite the limit: \[ \lim_{x \to 0} \frac{(b)x \sin x}{6x} \] ### Step 5: Simplify and substitute \( x = 0 \) This simplifies to: \[ \lim_{x \to 0} \frac{b \sin x}{6} = \frac{b \cdot 0}{6} = 0 \] We need to ensure that this limit equals 1. Therefore, we need to go back and ensure that the previous limit gives us a finite value. ### Step 6: Set up equations From the first derivative step, we had: \[ 1 + a - b = 0 \quad \text{(1)} \] From the second derivative step, we need: \[ -3a + b = 6 \quad \text{(2)} \] ### Step 7: Solve the equations From equation (1): \[ b = 1 + a \] Substituting \( b \) in equation (2): \[ -3a + (1 + a) = 6 \] This simplifies to: \[ -3a + 1 + a = 6 \implies -2a + 1 = 6 \implies -2a = 5 \implies a = -\frac{5}{2} \] Now substitute \( a \) back into equation (1): \[ b = 1 + \left(-\frac{5}{2}\right) = 1 - \frac{5}{2} = -\frac{3}{2} \] ### Final Values Thus, the values of \( a \) and \( b \) are: \[ a = -\frac{5}{2}, \quad b = -\frac{3}{2} \]

To solve the limit problem \( \lim_{x \to 0} \frac{x(1 + a \cos x) - b \sin x}{x^3} = 1 \), we need to find the values of \( a \) and \( b \). Here’s a step-by-step solution: ### Step 1: Identify the form of the limit As \( x \to 0 \): - \( \cos x \to 1 \) - \( \sin x \to 0 \) Thus, substituting \( x = 0 \) into the expression gives: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.5|12 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.6|9 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.3|15 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(xto0)(tanx-sinx)/(x^(3)).

Evaluate lim_(xto0) (1-cos(1-cosx))/(x^(4)).

Find the value of a so that lim_(xto0) (e^(ax)-e^(x)-x)=3/2.

lim_(xto0) (1- cos 2x)/(x^(2)) = _______

Evaluate lim_(xto0) (1-cos2x)/x^(2)

The value of ordered pair (a,b) such that lim _(xto0) (x (1+ a cos x ) -b sin x )/( x ^(3))=1, is:

The value of ordered pair (a,b) such that lim _(xto0) (x (1+ a cos x ) -b sin x )/( x ^(3))=1, is:

Evaluate lim_(xto0) (e^(x)-1-x)/(x^(2)).

Evaluate : lim_(xto0) (a^(x)-b^(x))/x

Evaluate lim_(xto0) (sinx-x)/(x^(3)).