Home
Class 12
MATHS
Evaluate lim(xto0) (1-cosmx)/(1-cosnx)....

Evaluate `lim_(xto0) (1-cosmx)/(1-cosnx).`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 0} \frac{1 - \cos(mx)}{1 - \cos(nx)}, \] we can use the known limit: \[ \lim_{x \to 0} \frac{1 - \cos(kx)}{(kx)^2} = \frac{1}{2} \quad \text{for any constant } k. \] ### Step-by-Step Solution: 1. **Rewrite the Limit**: Start by rewriting the limit in a form that allows us to use the known limit formula. We can multiply and divide both the numerator and the denominator by \(mx^2\) and \(nx^2\) respectively: \[ \lim_{x \to 0} \frac{1 - \cos(mx)}{1 - \cos(nx)} = \lim_{x \to 0} \frac{(1 - \cos(mx)) \cdot (mx^2)}{(1 - \cos(nx)) \cdot (nx^2)} \cdot \frac{mx^2}{nx^2}. \] 2. **Apply the Limit Formula**: Now we can apply the limit formula to both the numerator and the denominator: \[ \lim_{x \to 0} \frac{1 - \cos(mx)}{(mx)^2} = \frac{1}{2} \quad \text{and} \quad \lim_{x \to 0} \frac{1 - \cos(nx)}{(nx)^2} = \frac{1}{2}. \] 3. **Substituting the Limits**: Substitute these limits into our expression: \[ \lim_{x \to 0} \frac{1 - \cos(mx)}{1 - \cos(nx)} = \frac{\frac{1}{2} \cdot (mx)^2}{\frac{1}{2} \cdot (nx)^2} = \frac{m^2 x^2}{n^2 x^2}. \] 4. **Canceling Terms**: The \(x^2\) terms cancel out: \[ \frac{m^2}{n^2}. \] 5. **Final Result**: Therefore, the limit evaluates to: \[ \lim_{x \to 0} \frac{1 - \cos(mx)}{1 - \cos(nx)} = \frac{m^2}{n^2}. \] ### Final Answer: \[ \frac{m^2}{n^2}. \]

To evaluate the limit \[ \lim_{x \to 0} \frac{1 - \cos(mx)}{1 - \cos(nx)}, \] we can use the known limit: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.6|9 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.7|7 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.4|5 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(xto0) (1-cos2x)/x^(2)

Evaluate lim_(xto0) (logcosx)/(x)

Evaluate lim_(xto0) (1-cos(1-cosx))/(x^(4)).

Evaluate lim_(xto0) (sin[cosx])/(1+[cosx]) ( [.] denotes the greatest integer function).

Evaluate lim_(xto0) (cosx)^(cotx).

Evaluate lim_(xto0)(cosecx)^(x) .

Evaluate: ("lim")_(xto0)(1-"cos"(1-cosx)dot)/(x^4)

Evalaute lim_(xto0) (x2^(x)-x)/(1-cosx)

Evaluate lim_(xto0) (x(e^(x)-1))/(1-cosx) is equal to

Evaluate the following limits : Lim_(x to 0 ) (1-cosmx)/(1- cos nx)