Home
Class 12
MATHS
Evaluate lim(xto0) (cot2x-cosec2x)/(x)....

Evaluate `lim_(xto0) (cot2x-cosec2x)/(x).`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 0} \frac{\cot(2x) - \csc(2x)}{x}, \] we will follow these steps: ### Step 1: Rewrite cotangent and cosecant We start by rewriting \(\cot(2x)\) and \(\csc(2x)\) in terms of sine and cosine: \[ \cot(2x) = \frac{\cos(2x)}{\sin(2x)} \quad \text{and} \quad \csc(2x) = \frac{1}{\sin(2x)}. \] Thus, we can rewrite the expression as: \[ \lim_{x \to 0} \frac{\frac{\cos(2x)}{\sin(2x)} - \frac{1}{\sin(2x)}}{x} = \lim_{x \to 0} \frac{\cos(2x) - 1}{x \sin(2x)}. \] ### Step 2: Factor out the limit Now, we can separate the limit: \[ \lim_{x \to 0} \frac{\cos(2x) - 1}{x} \cdot \frac{1}{\sin(2x)}. \] ### Step 3: Use known limits We know that \[ \lim_{x \to 0} \frac{1 - \cos(2x)}{(2x)^2} = \frac{1}{2}, \] which implies \[ \lim_{x \to 0} \frac{\cos(2x) - 1}{x^2} = -\frac{1}{2}. \] Thus, \[ \lim_{x \to 0} \frac{\cos(2x) - 1}{x} = \lim_{x \to 0} \frac{\cos(2x) - 1}{(2x)^2} \cdot 2x = -\frac{1}{2} \cdot 2x = -x. \] ### Step 4: Substitute into the limit Now substituting back, we have: \[ \lim_{x \to 0} \frac{-x}{x \sin(2x)} = \lim_{x \to 0} \frac{-1}{\sin(2x)}. \] ### Step 5: Evaluate the limit As \(x \to 0\), \(\sin(2x) \to 2x\), so we have: \[ \lim_{x \to 0} \frac{-1}{\sin(2x)} = \lim_{x \to 0} \frac{-1}{2x} = -\frac{1}{2}. \] ### Final Result Thus, the limit evaluates to: \[ \lim_{x \to 0} \frac{\cot(2x) - \csc(2x)}{x} = -1. \]

To evaluate the limit \[ \lim_{x \to 0} \frac{\cot(2x) - \csc(2x)}{x}, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.6|9 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.7|7 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.4|5 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(xto0)(tan2x-sin2x)/(x^(3))

Evaluate lim_(xto0) (tan2x-x)/(3x-sinx).

Evaluate lim_(xto0) (2sinx-sin2x)/(x^(3))

Evaluate lim_(xto0) (1-cos2x)/x^(2)

Evaluate lim_(xto0) (logcosx)/(x)

Evaluate lim_(xto0)(cosecx)^(x) .

Evaluate lim_(xto0) (sqrt(2+x)-sqrt(2))/(x).

Evaluate lim_(xto0) sin(picos^(2)x)/(x^(2)).

Evaluate lim_(xto0) (e^(x^(2))-cosx)/(x^(2))

Evaluate lim_(xto0)(3^(2x)-2^(3x))/(x).