Home
Class 12
MATHS
Evaluate lim(ntooo)ncos((pi)/(4n))sin((p...

Evaluate `lim_(ntooo)ncos((pi)/(4n))sin((pi)/(4n)).`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \( \lim_{n \to \infty} n \cos\left(\frac{\pi}{4n}\right) \sin\left(\frac{\pi}{4n}\right) \), we can follow these steps: ### Step 1: Change the variable Let \( \theta = \frac{\pi}{4n} \). As \( n \to \infty \), \( \theta \to 0 \). ### Step 2: Rewrite the limit We can express \( n \) in terms of \( \theta \): \[ n = \frac{\pi}{4\theta} \] Now, rewrite the limit: \[ \lim_{n \to \infty} n \cos\left(\frac{\pi}{4n}\right) \sin\left(\frac{\pi}{4n}\right) = \lim_{\theta \to 0} \frac{\pi}{4\theta} \cos(\theta) \sin(\theta) \] ### Step 3: Use the double angle identity Using the identity \( 2 \cos(\theta) \sin(\theta) = \sin(2\theta) \), we rewrite the expression: \[ \lim_{\theta \to 0} \frac{\pi}{4\theta} \cdot \frac{1}{2} \sin(2\theta) = \lim_{\theta \to 0} \frac{\pi}{8\theta} \sin(2\theta) \] ### Step 4: Apply the limit Now, we can apply the limit: \[ \lim_{\theta \to 0} \frac{\sin(2\theta)}{2\theta} = 1 \] Thus, we have: \[ \lim_{\theta \to 0} \frac{\pi}{8\theta} \sin(2\theta) = \frac{\pi}{8} \cdot 1 = \frac{\pi}{8} \] ### Step 5: Final result Therefore, the final result is: \[ \lim_{n \to \infty} n \cos\left(\frac{\pi}{4n}\right) \sin\left(\frac{\pi}{4n}\right) = \frac{\pi}{8} \]

To evaluate the limit \( \lim_{n \to \infty} n \cos\left(\frac{\pi}{4n}\right) \sin\left(\frac{\pi}{4n}\right) \), we can follow these steps: ### Step 1: Change the variable Let \( \theta = \frac{\pi}{4n} \). As \( n \to \infty \), \( \theta \to 0 \). ### Step 2: Rewrite the limit We can express \( n \) in terms of \( \theta \): \[ ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.6|9 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.7|7 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.4|5 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate: (lim_(n->oo)ncos(pi/(4n))sin(pi/(4n))

Evaluate: lim_(n->oo)ncos(pi/(4n))sin(pi/(4n))

Evaluate lim_(ntooo)(pin)^(2//n)

Evaluate lim_(ntooo) {cos((x)/(2))cos((x)/(4))cos((x)/(8))...cos((x)/(2^(n)))} .

Evaluate lim_(nrarroo)(2)/(n)(sin.(pi)/(2n)+sin.(2pi)/(2n)+sin.(3pi)/(2n)+....+sin.(npi)/(2n))

Evaluate lim_(ntooo) sin^(n)((2pin)/(3n+1)),ninN.

The value of lim_(n->oo) [tan(pi/(2n)) tan((2pi)/(2n))........tan((npi)/(2n))]^(1/n) is

Evaluate lim_(ntooo) (4^(n)+5^(n))^(1//n)

evaluate lim_(n->oo)((e^n)/pi)^(1/ n)

evaluate lim_(n->oo)((e^n)/pi)^(1/ n)