Home
Class 12
MATHS
Evaluate lim(xto0) (cos^(-1)((1-x^(2))/(...

Evaluate `lim_(xto0) (cos^(-1)((1-x^(2))/(1+x^(2))))/(sin^(-1)x).`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 0} \frac{\cos^{-1}\left(\frac{1 - x^2}{1 + x^2}\right)}{\sin^{-1}(x)}, \] we will follow these steps: ### Step 1: Rewrite the expression We start with the limit: \[ \lim_{x \to 0} \frac{\cos^{-1}\left(\frac{1 - x^2}{1 + x^2}\right)}{\sin^{-1}(x)}. \] ### Step 2: Use the trigonometric identity Using the identity for cosine, we know that: \[ \frac{1 - \tan^2(\theta)}{1 + \tan^2(\theta)} = \cos(2\theta). \] We can let \( x = \tan(\theta) \). As \( x \to 0 \), \( \theta \to 0 \) as well. Thus, we rewrite the limit in terms of \( \theta \): \[ \frac{1 - \tan^2(\theta)}{1 + \tan^2(\theta)} = \cos(2\theta). \] ### Step 3: Substitute \( x = \tan(\theta) \) Substituting \( x = \tan(\theta) \) into the limit gives us: \[ \lim_{\theta \to 0} \frac{\cos^{-1}(\cos(2\theta))}{\sin^{-1}(\tan(\theta))}. \] ### Step 4: Simplify the limit The expression simplifies to: \[ \lim_{\theta \to 0} \frac{2\theta}{\sin^{-1}(\tan(\theta))}. \] ### Step 5: Use L'Hôpital's Rule Since both the numerator and denominator approach 0 as \( \theta \to 0 \), we can apply L'Hôpital's Rule: \[ \lim_{\theta \to 0} \frac{2}{\frac{d}{d\theta}(\sin^{-1}(\tan(\theta)))}. \] ### Step 6: Differentiate the denominator Using the chain rule, we differentiate \( \sin^{-1}(\tan(\theta)) \): \[ \frac{d}{d\theta}(\sin^{-1}(\tan(\theta))) = \frac{1}{\sqrt{1 - \tan^2(\theta)}} \cdot \sec^2(\theta). \] ### Step 7: Substitute back into the limit Now substituting back into our limit gives: \[ \lim_{\theta \to 0} \frac{2}{\frac{1}{\sqrt{1 - \tan^2(\theta)}} \cdot \sec^2(\theta)}. \] ### Step 8: Evaluate the limit As \( \theta \to 0 \), \( \tan(\theta) \to 0 \), so: \[ \sqrt{1 - \tan^2(0)} = 1 \quad \text{and} \quad \sec^2(0) = 1. \] Thus, the limit simplifies to: \[ \lim_{\theta \to 0} 2 \cdot 1 = 2. \] ### Final Answer Therefore, the limit evaluates to: \[ \boxed{2}. \]

To evaluate the limit \[ \lim_{x \to 0} \frac{\cos^{-1}\left(\frac{1 - x^2}{1 + x^2}\right)}{\sin^{-1}(x)}, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.6|9 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.7|7 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.4|5 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate: ("lim")_(xvec0)(cos^(-1)((1-x^2)/(1+x^2)))/(sin^(-1)x)

Evaluate lim_(xto0) (e^(x)-1-x)/(x^(2)).

Evaluate lim_(xto0) (1-cos2x)/x^(2)

Evaluate lim_(xto0) sin(picos^(2)x)/(x^(2)).

Evaluate lim_(xto0) ((1)/(x^(2))-(1)/(sin^(2)x)).

Evaluate lim_(xto0)(sin^(-1)x-tan^(-1)x)/(x^(3)).

Evaluate lim_(xto0) (1-cos(1-cosx))/(x^(4)).

Evaluate lim_(xto0)((1+5x^(2))/(1+3x^(2)))^(1//x^(2))

Evalaute lim_(xto0) (x2^(x)-x)/(1-cosx)

Evaluate : lim_(xto0) (1+ax)^(1//x)