Home
Class 12
MATHS
Evaluate lim(hto0) (2[sqrt(3)sin((pi)/(6...

Evaluate `lim_(hto0) (2[sqrt(3)sin((pi)/(6)+h)-cos((pi)/(6)+h)])/(sqrt(3)h(sqrt(3)cosh-sinh)).`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{h \to 0} \frac{2\left(\sqrt{3}\sin\left(\frac{\pi}{6}+h\right) - \cos\left(\frac{\pi}{6}+h\right)\right)}{\sqrt{3}h\left(\sqrt{3}\cos h - \sin h\right)}, \] we will proceed step by step. ### Step 1: Substitute Known Values First, we know that: \[ \sin\left(\frac{\pi}{6}\right) = \frac{1}{2}, \quad \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}. \] Thus, we can rewrite the limit as: \[ \lim_{h \to 0} \frac{2\left(\sqrt{3}\left(\frac{1}{2} + \cos h\right) - \frac{\sqrt{3}}{2} - \sin h\right)}{\sqrt{3}h\left(\sqrt{3}\cos h - \sin h\right)}. \] ### Step 2: Simplify the Numerator Using the angle addition formulas: \[ \sin\left(\frac{\pi}{6}+h\right) = \sin\left(\frac{\pi}{6}\right)\cos h + \cos\left(\frac{\pi}{6}\right)\sin h = \frac{1}{2}\cos h + \frac{\sqrt{3}}{2}\sin h, \] \[ \cos\left(\frac{\pi}{6}+h\right) = \cos\left(\frac{\pi}{6}\right)\cos h - \sin\left(\frac{\pi}{6}\right)\sin h = \frac{\sqrt{3}}{2}\cos h - \frac{1}{2}\sin h. \] Substituting these into the numerator gives: \[ \sqrt{3}\left(\frac{1}{2}\cos h + \frac{\sqrt{3}}{2}\sin h\right) - \left(\frac{\sqrt{3}}{2}\cos h - \frac{1}{2}\sin h\right). \] ### Step 3: Combine Terms This simplifies to: \[ \frac{\sqrt{3}}{2}\cos h + \frac{3}{2}\sin h - \frac{\sqrt{3}}{2}\cos h + \frac{1}{2}\sin h = 2\sin h. \] Thus, the limit now becomes: \[ \lim_{h \to 0} \frac{2 \cdot 2\sin h}{\sqrt{3}h\left(\sqrt{3}\cos h - \sin h\right)} = \lim_{h \to 0} \frac{4\sin h}{\sqrt{3}h\left(\sqrt{3}\cos h - \sin h\right)}. \] ### Step 4: Use the Limit Property We know that: \[ \lim_{h \to 0} \frac{\sin h}{h} = 1. \] Thus, we can rewrite the limit as: \[ \lim_{h \to 0} \frac{4}{\sqrt{3}\left(\sqrt{3}\cos h - \sin h\right)}. \] ### Step 5: Evaluate the Remaining Limit As \( h \to 0 \), we have: \[ \cos h \to 1 \quad \text{and} \quad \sin h \to 0. \] So, \[ \sqrt{3}\cos h - \sin h \to \sqrt{3} \cdot 1 - 0 = \sqrt{3}. \] Thus, the limit becomes: \[ \frac{4}{\sqrt{3} \cdot \sqrt{3}} = \frac{4}{3}. \] ### Final Answer Therefore, the limit is: \[ \lim_{h \to 0} \frac{2\left(\sqrt{3}\sin\left(\frac{\pi}{6}+h\right) - \cos\left(\frac{\pi}{6}+h\right)\right)}{\sqrt{3}h\left(\sqrt{3}\cos h - \sin h\right)} = \frac{4}{3}. \]

To evaluate the limit \[ \lim_{h \to 0} \frac{2\left(\sqrt{3}\sin\left(\frac{\pi}{6}+h\right) - \cos\left(\frac{\pi}{6}+h\right)\right)}{\sqrt{3}h\left(\sqrt{3}\cos h - \sin h\right)}, \] we will proceed step by step. ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.6|9 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.7|7 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.4|5 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate: ("lim")_(hvec0)(2[sqrt(3)sin(pi/6+h)-cos(pi/6+h)])/(sqrt(3)h(sqrt(3)cosh-sinh)

Evaluate lim_(hto0)(sqrt(x+h)-sqrt(x))/(h)

Evaluate, lim_(xto(pi//6)) (sqrt(3)sinx-cosx)/(x-pi/6)

Evaluate lim_(xto(pi)/(6)) (2-sqrt(3)cosx-sinx)/((6x-pi)^(2)).

Evaluate lim_(hto0)(log_(10)(1+h))/h

Evaluate lim_(hto0) [(1)/(h^(3)sqrt(8+h))-(1)/(2h)].

Evaluate lim_(x to 3) (sqrt(x + 3) - sqrt(6))/(x^(2) - 9)

Evaluate lim_(xto(pi/3)) sqrt(1-cos6x)/(sqrt(2)(pi/3-x)

Evaluate lim_(x->pi)(sqrt(1-cos6x))/(sqrt2(pi/3-x))

Evaluate lim_(hto0) (log_(e)(1+2h)-2log_(e)(1+h))/(h^(2)).