Home
Class 12
MATHS
Evaluate lim(xto0) (8)/(x^(8)){1-"cos"(x...

Evaluate `lim_(xto0) (8)/(x^(8)){1-"cos"(x^(2))/(2)-"cos"(x^(2))/(4)+"cos"(x^(2))/(2)"cos"(x^(2))/(4)}.`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 0} \frac{8}{x^8} \left( 1 - \cos\left(\frac{x^2}{2}\right) - \cos\left(\frac{x^2}{4}\right) + \cos\left(\frac{x^2}{2}\right) \cos\left(\frac{x^2}{4}\right) \right), \] we will follow these steps: ### Step 1: Rewrite the expression The expression can be rewritten as: \[ \lim_{x \to 0} \frac{8}{x^8} \left( \left(1 - \cos\left(\frac{x^2}{2}\right)\right) + \left(1 - \cos\left(\frac{x^2}{4}\right)\right) - \left(1 - \cos\left(\frac{x^2}{2}\right)\right)\left(1 - \cos\left(\frac{x^2}{4}\right)\right) \right). \] ### Step 2: Use the identity for cosine Using the identity \(1 - \cos(a) = 2\sin^2\left(\frac{a}{2}\right)\), we can express: \[ 1 - \cos\left(\frac{x^2}{2}\right) = 2\sin^2\left(\frac{x^2}{4}\right), \] \[ 1 - \cos\left(\frac{x^2}{4}\right) = 2\sin^2\left(\frac{x^2}{8}\right). \] Substituting these into our limit gives: \[ \lim_{x \to 0} \frac{8}{x^8} \left( 2\sin^2\left(\frac{x^2}{4}\right) + 2\sin^2\left(\frac{x^2}{8}\right) - 4\sin^2\left(\frac{x^2}{4}\right)\sin^2\left(\frac{x^2}{8}\right) \right). \] ### Step 3: Factor out constants We can factor out the constants: \[ = \lim_{x \to 0} \frac{8}{x^8} \cdot 2 \left( \sin^2\left(\frac{x^2}{4}\right) + \sin^2\left(\frac{x^2}{8}\right) - 2\sin^2\left(\frac{x^2}{4}\right)\sin^2\left(\frac{x^2}{8}\right) \right). \] ### Step 4: Simplify the limit Now we can simplify the limit. As \(x \to 0\), we can use the small angle approximation \(\sin(x) \approx x\): \[ \sin\left(\frac{x^2}{4}\right) \approx \frac{x^2}{4}, \quad \sin\left(\frac{x^2}{8}\right) \approx \frac{x^2}{8}. \] Thus, \[ \sin^2\left(\frac{x^2}{4}\right) \approx \left(\frac{x^2}{4}\right)^2 = \frac{x^4}{16}, \quad \sin^2\left(\frac{x^2}{8}\right) \approx \left(\frac{x^2}{8}\right)^2 = \frac{x^4}{64}. \] ### Step 5: Substitute back into the limit Substituting these approximations back into the limit gives: \[ \lim_{x \to 0} \frac{8}{x^8} \cdot 2 \left( \frac{x^4}{16} + \frac{x^4}{64} - 2 \cdot \frac{x^4}{16} \cdot \frac{x^4}{64} \right). \] ### Step 6: Combine terms Combining the terms inside the limit: \[ = \lim_{x \to 0} \frac{8}{x^8} \cdot 2 \left( \frac{x^4}{16} + \frac{x^4}{64} - \frac{x^8}{1024} \right). \] ### Step 7: Factor out \(x^4\) Factoring out \(x^4\): \[ = \lim_{x \to 0} \frac{8 \cdot 2}{x^8} \cdot x^4 \left( \frac{1}{16} + \frac{1}{64} - \frac{x^4}{1024} \right). \] ### Step 8: Evaluate the limit As \(x \to 0\), the term \(-\frac{x^4}{1024}\) approaches 0: \[ = \lim_{x \to 0} \frac{16}{x^8} \cdot x^4 \left( \frac{1}{16} + \frac{1}{64} \right) = \lim_{x \to 0} \frac{16}{x^8} \cdot x^4 \cdot \frac{5}{64} = \lim_{x \to 0} \frac{80}{64 x^4} = \frac{80}{64} \cdot \lim_{x \to 0} \frac{1}{x^4}. \] ### Final Answer Thus, the limit evaluates to: \[ \frac{80}{64} = \frac{5}{4}. \]

To evaluate the limit \[ \lim_{x \to 0} \frac{8}{x^8} \left( 1 - \cos\left(\frac{x^2}{2}\right) - \cos\left(\frac{x^2}{4}\right) + \cos\left(\frac{x^2}{2}\right) \cos\left(\frac{x^2}{4}\right) \right), \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.6|9 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.7|7 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.4|5 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(xto0) (1-cos2x)/x^(2)

Evaluate: ("lim")_(xrarr0)8/(x^8){1-cos((x^2)/2)-cos((x^2)/4)+cos((x^2)/2)cos((x^2)/4)}

Evaluate lim_(xto0) (1-cos(1-cosx))/(x^(4)).

Evaluate lim_(xto0)((1+5x^(2))/(1+3x^(2)))^(1//x^(2))

Evaluate lim_(xto0) (xtan2x-2xtanx)/((1-cos2x)^(2)).

Evaluate the following limits (i) lim_(x to (pi)/(2)) tan^(2) x [sqrt(2 sin^(2) x + 3 sin x + 4) - sqrt(sin^(2) x + 6 sin x + 2)] (ii) lim_(theta to 0) (sqrt(1 + sin 3 theta) -1)/(ln(1 + tan 2theta)) (iii) lim_(x to 0) (sqrt(1 + x) - ""^(3)sqrt(1 + x))/(x) (iv) lim_(phi to 0) (8)/(phi^(8)) (1 - cos (phi^(2))/(2) - cos (phi^(2))/(4) + cos (phi^(2))/(2). cos (phi^(2))/(4))

Evaluate: lim_(x->0) (1-cos2x)/(x^2)

lim_(xto0) (1)/(x^12){1-cos (x^2/2)-cos (x^4/4)+cos (x^2/2) cos (x^4/4)} is equal to

Evaluate lim_(xto0)x^(3)"cos"2/x .

Evaluate lim_(xto0)(int_(0)^(x^(2))cos^(2)tdt)/(x sin x)