Home
Class 12
MATHS
Evaluate lim(xto1) (1-x)"tan"(pix)/(2)....

Evaluate `lim_(xto1) (1-x)"tan"(pix)/(2).`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \( \lim_{x \to 1} (1 - x) \tan\left(\frac{\pi x}{2}\right) \), we can follow these steps: ### Step 1: Rewrite the limit We start with the limit expression: \[ \lim_{x \to 1} (1 - x) \tan\left(\frac{\pi x}{2}\right) \] ### Step 2: Identify the form of the limit As \( x \to 1 \), \( 1 - x \to 0 \) and \( \tan\left(\frac{\pi x}{2}\right) \to \tan\left(\frac{\pi}{2}\right) \), which is undefined. However, we can analyze the behavior of \( \tan\left(\frac{\pi x}{2}\right) \) as \( x \) approaches 1. ### Step 3: Use the identity for tangent Recall that \( \tan\left(\frac{\pi x}{2}\right) \) approaches infinity as \( x \to 1 \). To handle this, we can rewrite the tangent function using the identity: \[ \tan\left(\frac{\pi x}{2}\right) = \frac{\sin\left(\frac{\pi x}{2}\right)}{\cos\left(\frac{\pi x}{2}\right)} \] As \( x \to 1 \), \( \cos\left(\frac{\pi x}{2}\right) \to 0 \) and \( \sin\left(\frac{\pi x}{2}\right) \to 1 \). ### Step 4: Rewrite the limit using sine and cosine Thus, we can express the limit as: \[ \lim_{x \to 1} (1 - x) \cdot \frac{\sin\left(\frac{\pi x}{2}\right)}{\cos\left(\frac{\pi x}{2}\right)} \] ### Step 5: Substitute \( y = 1 - x \) Let \( y = 1 - x \), then as \( x \to 1 \), \( y \to 0 \). We rewrite \( x \) in terms of \( y \): \[ x = 1 - y \] Thus, the limit becomes: \[ \lim_{y \to 0} y \cdot \tan\left(\frac{\pi (1 - y)}{2}\right) = \lim_{y \to 0} y \cdot \tan\left(\frac{\pi}{2} - \frac{\pi y}{2}\right) \] ### Step 6: Use the identity for tangent Using the identity \( \tan\left(\frac{\pi}{2} - \theta\right) = \cot(\theta) \), we have: \[ \tan\left(\frac{\pi}{2} - \frac{\pi y}{2}\right) = \cot\left(\frac{\pi y}{2}\right) \] ### Step 7: Rewrite the limit Now the limit can be rewritten as: \[ \lim_{y \to 0} y \cdot \cot\left(\frac{\pi y}{2}\right) \] ### Step 8: Use the cotangent identity Recall that \( \cot(z) = \frac{\cos(z)}{\sin(z)} \). As \( y \to 0 \), we can use the approximation: \[ \cot\left(\frac{\pi y}{2}\right) \approx \frac{2}{\pi y} \] Thus, the limit becomes: \[ \lim_{y \to 0} y \cdot \frac{2}{\pi y} = \lim_{y \to 0} \frac{2}{\pi} = \frac{2}{\pi} \] ### Final Answer Therefore, the limit evaluates to: \[ \lim_{x \to 1} (1 - x) \tan\left(\frac{\pi x}{2}\right) = \frac{2}{\pi} \]

To evaluate the limit \( \lim_{x \to 1} (1 - x) \tan\left(\frac{\pi x}{2}\right) \), we can follow these steps: ### Step 1: Rewrite the limit We start with the limit expression: \[ \lim_{x \to 1} (1 - x) \tan\left(\frac{\pi x}{2}\right) \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.6|9 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.7|7 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.4|5 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(xtoa)(2-a/x)^("tan"(pix)/(2a)

The value of lim_(xto1) (2-x)^(tan((pix)/(2))) is

Evaluate lim_(xto1) ("cos"(pi)/(2)x)/(1-sqrt(x))

Evaluate lim_(xto1) "sec" (pi)/(2^(x)).log_(e)x .

Evaluate lim_(xto1) (a^(x-1)-1)/(sinpix).

Evaluate lim_(xto0) (e^(x)-1-x)/(x^(2)).

Evaluate lim_(xto1) ((2x-3)(sqrt(x)-1))/(2x^(2)+x-3).

Evaluate lim_(xto0) (1-cos2x)/x^(2)

Evaluate: lim_(xto0)(tan8x)/(sin3x)

Evaluate : lim_(xto0) (1+ax)^(1//x)