Home
Class 12
MATHS
Evaluate lim(xto0) (xtan2x-2xtanx)/((1-c...

Evaluate `lim_(xto0) (xtan2x-2xtanx)/((1-cos2x)^(2)).`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 0} \frac{x \tan(2x) - 2x \tan(x)}{(1 - \cos(2x))^2}, \] we will follow these steps: ### Step 1: Rewrite the expression We start with the limit expression: \[ \lim_{x \to 0} \frac{x \tan(2x) - 2x \tan(x)}{(1 - \cos(2x))^2}. \] ### Step 2: Use the identity for \( \cos(2x) \) We know that \( \cos(2x) = 1 - 2\sin^2(x) \). Therefore, \[ 1 - \cos(2x) = 2\sin^2(x). \] Substituting this into the limit gives: \[ \lim_{x \to 0} \frac{x \tan(2x) - 2x \tan(x)}{(2\sin^2(x))^2} = \lim_{x \to 0} \frac{x \tan(2x) - 2x \tan(x)}{4\sin^4(x)}. \] ### Step 3: Factor out \( x \) from the numerator Now, we can factor \( x \) out of the numerator: \[ = \lim_{x \to 0} \frac{x(\tan(2x) - 2\tan(x))}{4\sin^4(x)}. \] ### Step 4: Simplify the limit We can rewrite the limit as: \[ \lim_{x \to 0} \frac{\tan(2x) - 2\tan(x)}{4\sin^4(x)}. \] ### Step 5: Use Taylor series expansion Using the Taylor series expansion for small \( x \): \[ \tan(x) \approx x + \frac{x^3}{3} + O(x^5), \] we have: \[ \tan(2x) \approx 2x + \frac{(2x)^3}{3} = 2x + \frac{8x^3}{3}. \] Thus, \[ \tan(2x) - 2\tan(x) \approx \left(2x + \frac{8x^3}{3}\right) - 2\left(x + \frac{x^3}{3}\right) = \frac{8x^3}{3} - \frac{2x^3}{3} = \frac{6x^3}{3} = 2x^3. \] ### Step 6: Substitute back into the limit Now substituting back into the limit gives: \[ \lim_{x \to 0} \frac{2x^3}{4\sin^4(x)}. \] ### Step 7: Use the small angle approximation for \( \sin(x) \) For small \( x \), \( \sin(x) \approx x \). Therefore, \( \sin^4(x) \approx x^4 \): \[ \lim_{x \to 0} \frac{2x^3}{4x^4} = \lim_{x \to 0} \frac{2}{4x} = \lim_{x \to 0} \frac{1}{2x}. \] ### Step 8: Evaluate the limit As \( x \to 0 \), \( \frac{1}{2x} \to \infty \). Thus, the limit diverges. ### Final Result The limit diverges to \( \infty \).

To evaluate the limit \[ \lim_{x \to 0} \frac{x \tan(2x) - 2x \tan(x)}{(1 - \cos(2x))^2}, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.6|9 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.7|7 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.4|5 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(xto0)(tan2x-sin2x)/(x^(3))

Evaluate lim_(xto0) (tan2x-x)/(3x-sinx).

lim_(x->0)((xtan2x-2xtanx)/(1-cos2x)^2) is equal to

Evaluate lim_(xto0) (cot2x-cosec2x)/(x).

Evalaute lim_(xto0) (x2^(x)-x)/(1-cosx)

Evaluate lim_(xto0) (2sinx-sin2x)/(x^(3))

Evaluate lim_(xto0)(3^(2x)-2^(3x))/(x).

Evaluate lim_(xto0) (1-cos2x)/x^(2)

Evaluate lim_(xto0^(-)) (x^(2)-3x+2)/(x^(3)-2x^(2)).

Evaluate lim_(xto0) (e^(x)-1-x)/(x^(2)).