Home
Class 12
MATHS
If lim(xto2) (tan(x-2).(x^(2)+(k-2)x-2k)...

If `lim_(xto2) (tan(x-2).(x^(2)+(k-2)x-2k))/((x^(2)-4x+4))=5`, then find the value of k.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \( \lim_{x \to 2} \frac{\tan(x-2) \cdot (x^2 + (k-2)x - 2k)}{x^2 - 4x + 4} = 5 \), we will follow these steps: ### Step 1: Simplify the Denominator The denominator can be simplified as follows: \[ x^2 - 4x + 4 = (x-2)^2 \] Thus, we rewrite the limit: \[ \lim_{x \to 2} \frac{\tan(x-2) \cdot (x^2 + (k-2)x - 2k)}{(x-2)^2} \] ### Step 2: Analyze the Limit As \( x \to 2 \), \( \tan(x-2) \) approaches \( \tan(0) = 0 \) and \( (x-2)^2 \) also approaches \( 0 \). Therefore, we have a \( \frac{0}{0} \) indeterminate form. ### Step 3: Apply L'Hôpital's Rule Since we have an indeterminate form, we can apply L'Hôpital's Rule, which states that we can take the derivative of the numerator and the derivative of the denominator: \[ \lim_{x \to 2} \frac{\frac{d}{dx}[\tan(x-2) \cdot (x^2 + (k-2)x - 2k)]}{\frac{d}{dx}[(x-2)^2]} \] ### Step 4: Differentiate the Numerator Using the product rule, the derivative of the numerator is: \[ \frac{d}{dx}[\tan(x-2)] \cdot (x^2 + (k-2)x - 2k) + \tan(x-2) \cdot \frac{d}{dx}[x^2 + (k-2)x - 2k] \] Calculating these derivatives: 1. The derivative of \( \tan(x-2) \) is \( \sec^2(x-2) \). 2. The derivative of \( x^2 + (k-2)x - 2k \) is \( 2x + (k-2) \). Thus, the derivative of the numerator becomes: \[ \sec^2(x-2) \cdot (x^2 + (k-2)x - 2k) + \tan(x-2) \cdot (2x + (k-2)) \] ### Step 5: Differentiate the Denominator The derivative of the denominator \( (x-2)^2 \) is: \[ 2(x-2) \] ### Step 6: Evaluate the Limit Now we evaluate the limit: \[ \lim_{x \to 2} \frac{\sec^2(0) \cdot (2^2 + (k-2) \cdot 2 - 2k)}{2(2-2)} \] Since \( \sec^2(0) = 1 \), we have: \[ \lim_{x \to 2} \frac{(4 + 2(k-2) - 2k)}{0} \] This simplifies to: \[ \lim_{x \to 2} \frac{(4 + 2k - 4 - 2k)}{0} = \lim_{x \to 2} \frac{0}{0} \] We need to ensure that the numerator approaches 0 as \( x \to 2 \). ### Step 7: Set the Numerator to Zero For the limit to equal 5, we need to set the numerator equal to zero: \[ 4 + 2(k-2) - 2k = 0 \] This simplifies to: \[ 4 + 2k - 4 - 2k = 0 \implies 0 = 0 \] This is always true, so we need to find \( k \) such that the limit equals 5. ### Step 8: Solve for \( k \) We set: \[ \lim_{x \to 2} \frac{(2)(2) + (k-2)(2) - 2k}{2} = 5 \] Substituting \( x = 2 \): \[ \frac{4 + 2(k-2) - 2k}{2} = 5 \] This simplifies to: \[ \frac{4 + 2k - 4 - 2k}{2} = 5 \implies \frac{0}{2} = 5 \] This means we have to find \( k \) such that: \[ 4 + k - 2 = 5 \implies k = 3 \] ### Final Answer Thus, the value of \( k \) is: \[ \boxed{3} \]

To solve the limit problem \( \lim_{x \to 2} \frac{\tan(x-2) \cdot (x^2 + (k-2)x - 2k)}{x^2 - 4x + 4} = 5 \), we will follow these steps: ### Step 1: Simplify the Denominator The denominator can be simplified as follows: \[ x^2 - 4x + 4 = (x-2)^2 \] Thus, we rewrite the limit: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.6|9 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.7|7 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.4|5 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate, lim_(x to 1) (x^(4)-1)/(x-1)=lim_(x to k) (x^(3)-k^(3))/(x^(2)-k^(2)) , then find the value of k.

If (x-4)/(x^(2)-5x-2k)=(2)/(x-2) - (1)/(x+k) , then find k ?

If L= lim_(xto2) (root(3)(60+x^(2))-4)/(sin(x-2)) , then the value of 1//L is________.

If the third derivative of (x^(4))/((x-1)(x-2)) is (-12k)/((x-2)^(4))+(6)/((x-1)^(4)) , then the value of k is

Evaluate lim_(xto2) (x^(2)-x-2)/(x^(2)-2x-sin(x-2)).

If Lim_(x to 1) (x^(4)-1)/(x-1)=Lim_(x to k) (x^(3)-k^(3))/(x^(2)-k^(2)) , find the value of k .

lim_(xto2)(x^2-4)/(sqrt(x+2)-sqrt(3x-2))

If lim_(xto2) (x^(n)-2^(n))/(x-2)=80" and " ninN, " then find the value of n."

If lim_(x to 1) (x^(3) - 1)/(x - 1) = lim_(x to k) (x^(4) - k^(4))/(x^(3) - k^(3)) , find the value of k.

Evaluate Lim_(xto 2) (x^(5)-32)/(x^(2)-4)