Home
Class 12
MATHS
Evaluate lim(x to oo) (log(3)3x)^(log(x)...

Evaluate `lim_(x to oo) (log_(3)3x)^(log_(x)3).`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \( \lim_{x \to \infty} (\log_3 (3x))^{\log_x 3} \), we will follow these steps: ### Step 1: Simplify the logarithm We start with the expression inside the limit: \[ \log_3 (3x) = \log_3 3 + \log_3 x \] Using the property of logarithms that states \( \log_a (bc) = \log_a b + \log_a c \). ### Step 2: Substitute back into the limit Now we can rewrite the limit: \[ \lim_{x \to \infty} (\log_3 (3x))^{\log_x 3} = \lim_{x \to \infty} (\log_3 3 + \log_3 x)^{\log_x 3} \] ### Step 3: Change the base of the logarithm Next, we know that \( \log_x 3 = \frac{1}{\log_3 x} \) (using the change of base formula). Thus, we can rewrite the limit as: \[ \lim_{x \to \infty} (\log_3 3 + \log_3 x)^{\frac{1}{\log_3 x}} \] ### Step 4: Analyze the limit As \( x \to \infty \), \( \log_3 x \to \infty \). Therefore, we can express the limit as: \[ \lim_{x \to \infty} \left( \log_3 3 + \log_3 x \right)^{\frac{1}{\log_3 x}} = \lim_{x \to \infty} \left( \log_3 x \left(1 + \frac{\log_3 3}{\log_3 x}\right) \right)^{\frac{1}{\log_3 x}} \] ### Step 5: Simplify further This can be simplified to: \[ \lim_{x \to \infty} \left( \log_3 x \right)^{\frac{1}{\log_3 x}} \cdot \left(1 + \frac{\log_3 3}{\log_3 x}\right)^{\frac{1}{\log_3 x}} \] ### Step 6: Evaluate the first part The first part \( \left( \log_3 x \right)^{\frac{1}{\log_3 x}} \) approaches \( e \) as \( x \to \infty \) because it is of the form \( x^{1/x} \). ### Step 7: Evaluate the second part The second part \( \left(1 + \frac{\log_3 3}{\log_3 x}\right)^{\frac{1}{\log_3 x}} \) approaches \( 1 \) as \( x \to \infty \). ### Step 8: Combine results Thus, we have: \[ \lim_{x \to \infty} \left( \log_3 x \right)^{\frac{1}{\log_3 x}} \cdot \left(1 + \frac{\log_3 3}{\log_3 x}\right)^{\frac{1}{\log_3 x}} = e \cdot 1 = e \] ### Final Answer Therefore, the limit evaluates to: \[ \lim_{x \to \infty} (\log_3 (3x))^{\log_x 3} = e \] ---

To evaluate the limit \( \lim_{x \to \infty} (\log_3 (3x))^{\log_x 3} \), we will follow these steps: ### Step 1: Simplify the logarithm We start with the expression inside the limit: \[ \log_3 (3x) = \log_3 3 + \log_3 x \] Using the property of logarithms that states \( \log_a (bc) = \log_a b + \log_a c \). ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.8|8 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Exercises (Single Correct Answer Type)|76 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.6|9 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(xtooo) (log_(e)x)/(x)

Evaluate : lim_(x to oo) ((x-3)/(x+3))^(x+3)

The value of lim_(x to oo ) (log_(e)(log_(e)x))/(e^(sqrt(x))) is _________. (a) π/ 2 (b)0 (c)-π (d)π

lim_(x->1) (log_3 3x)^(log_x 3)=

lim_(x->1) (log_3 3x)^(log_x 3)=

Evaluate lim_(xto1) (x^(2)+xlog_(e)x-log_(e)x-1)/((x^(2))-1)

Evaluate Lim_(x to 0) (log (a+x) - log(a-x))/x , a gt 0

Evaluate: lim_(xto0)(log(1-3x))/(5^(x)-1)

Find the value of lim_(xto0^(+)) (3(log_(e)x)^(2)+5log_(e)x+6)/(1+(log_(e)x)^(2)).

Evaluate x lim_(xto2) (x-2)/(log_(a)(x-1)).