Home
Class 12
MATHS
Evaluate lim(xto7//2) (2x^(2)-9x+8)^(cot...

Evaluate `lim_(xto7//2) (2x^(2)-9x+8)^(cot(2x-7)).`

A

both `underset(xtoa)limf(x)` and `underset(xtoa)limg(x)` must exist

B

`underset(xtoa)limf(x)` need not exist but `underset(xtoa)limg(x)` exists

C

neither `underset(xtoa)limf(x)` nor `underset(xtoa)limg(x)` may exist

D

`underset(xtoa)limf(x)` exists but `underset(xtoa)limg(x)` need not exist

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \( \lim_{x \to \frac{7}{2}} (2x^2 - 9x + 8)^{\cot(2x - 7)} \), we will follow these steps: ### Step 1: Substitute \( x = \frac{7}{2} \) First, we substitute \( x = \frac{7}{2} \) into the expression \( 2x^2 - 9x + 8 \): \[ 2 \left(\frac{7}{2}\right)^2 - 9 \left(\frac{7}{2}\right) + 8 \] Calculating each term: \[ 2 \cdot \frac{49}{4} - \frac{63}{2} + 8 = \frac{49}{2} - \frac{63}{2} + \frac{16}{2} = \frac{49 - 63 + 16}{2} = \frac{2}{2} = 1 \] So, we have: \[ 2x^2 - 9x + 8 \to 1 \text{ as } x \to \frac{7}{2} \] ### Step 2: Evaluate \( \cot(2x - 7) \) Next, we evaluate \( \cot(2x - 7) \) as \( x \to \frac{7}{2} \): \[ 2x - 7 \to 2 \cdot \frac{7}{2} - 7 = 0 \] Thus, \( \cot(2x - 7) \to \cot(0) \), which is undefined and approaches infinity. ### Step 3: Identify the form of the limit We have \( 1^{\infty} \) form, which is an indeterminate form. We can use the exponential limit property: \[ \lim_{x \to a} f(x)^{g(x)} = e^{\lim_{x \to a} g(x) \cdot (f(x) - 1)} \] Here, \( f(x) = 2x^2 - 9x + 8 \) and \( g(x) = \cot(2x - 7) \). ### Step 4: Calculate \( g(x) \cdot (f(x) - 1) \) We need to calculate: \[ \lim_{x \to \frac{7}{2}} \cot(2x - 7) \cdot ((2x^2 - 9x + 8) - 1) \] We already found that \( (2x^2 - 9x + 8) - 1 \to 0 \) as \( x \to \frac{7}{2} \). ### Step 5: Rewrite \( \cot(2x - 7) \) Using the identity \( \cot(x) = \frac{\cos(x)}{\sin(x)} \), we rewrite: \[ \cot(2x - 7) = \frac{\cos(2x - 7)}{\sin(2x - 7)} \] As \( x \to \frac{7}{2} \), both \( \cos(2x - 7) \) approaches \( \cos(0) = 1 \) and \( \sin(2x - 7) \) approaches \( 0 \). ### Step 6: Apply L'Hôpital's Rule Since we have a \( \frac{0}{0} \) form, we can apply L'Hôpital's Rule: \[ \lim_{x \to \frac{7}{2}} \frac{\cos(2x - 7)}{\sin(2x - 7)} = \lim_{x \to \frac{7}{2}} \frac{-2\sin(2x - 7)}{2\cos(2x - 7)} = \lim_{x \to \frac{7}{2}} -\tan(2x - 7) \] As \( x \to \frac{7}{2} \), \( -\tan(0) = 0 \). ### Step 7: Combine results Thus, we have: \[ \lim_{x \to \frac{7}{2}} \cot(2x - 7) \cdot ((2x^2 - 9x + 8) - 1) = \lim_{x \to \frac{7}{2}} \frac{\cos(2x - 7)}{\sin(2x - 7)} \cdot 0 = 0 \] ### Step 8: Final result Now substituting back into the exponential limit: \[ \lim_{x \to \frac{7}{2}} (2x^2 - 9x + 8)^{\cot(2x - 7)} = e^{0} = 1 \] Thus, the final answer is: \[ \boxed{1} \]

To evaluate the limit \( \lim_{x \to \frac{7}{2}} (2x^2 - 9x + 8)^{\cot(2x - 7)} \), we will follow these steps: ### Step 1: Substitute \( x = \frac{7}{2} \) First, we substitute \( x = \frac{7}{2} \) into the expression \( 2x^2 - 9x + 8 \): \[ 2 \left(\frac{7}{2}\right)^2 - 9 \left(\frac{7}{2}\right) + 8 ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.8|8 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Exercises (Single Correct Answer Type)|76 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.6|9 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate: ("lim")_(x->7/2)(2x^2-9x+8)^(cot(2x-7))

Evaluate: ("lim")_(xvec7/2)(2x^2-9x+8)^(cot(2x-7))

Evaluate lim_(xto3) ((x^(2)-9))/((x-3))

Evaluate lim_(xto0) (1-cos2x)/x^(2)

Evaluate lim_(xto 1//2) ((4x^(2)-1))/((2x-1)) .

Evaluate lim_(xto2) (x^(2)-5x+6)/(x^(2)-4).

Evaluate lim_(x to 3)(x^(2) - 9)/(x + 2)

Evaluate lim_(xto2) (x^(2)-x-2)/(x^(2)-2x-sin(x-2)).

Evaluate lim_(xto0) (e^(x^(2))-cosx)/(x^(2))

Evaluate lim_(xto0) (e^(x)-1-x)/(x^(2)).