Home
Class 12
MATHS
Let f(x)=(sin^(-1)(1-{x})xxcos^(-1)(1-{x...

`Let f(x)=(sin^(-1)(1-{x})xxcos^(-1)(1-{x}))/(sqrt(2{x})xx(1-{x}))`, where `{x}` denotes the fractional part of x.
`L= lim_(xto0-) f(x)` is equal to

A

`(pi)/(2)`

B

`(pi)/(2sqrt(2))`

C

`(pi)`

D

`(1)/(2sqrt(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the limit \( L = \lim_{x \to 0^-} f(x) \) where \[ f(x) = \frac{\sin^{-1}(1 - \{x\}) \cdot x \cdot \cos^{-1}(1 - \{x\})}{\sqrt{2\{x\}} \cdot (1 - \{x\})} \] we need to analyze the behavior of the function as \( x \) approaches \( 0 \) from the left. ### Step 1: Understand the fractional part function The fractional part of \( x \), denoted as \( \{x\} \), is defined as \( x - \lfloor x \rfloor \). As \( x \to 0^- \), \( \lfloor x \rfloor = -1 \), hence: \[ \{x\} = x - (-1) = x + 1 \] So, as \( x \to 0^- \), \( \{x\} \to 1 \). ### Step 2: Substitute \(\{x\}\) into \(f(x)\) Now we can rewrite \( f(x) \): \[ f(x) = \frac{\sin^{-1}(1 - (x + 1)) \cdot x \cdot \cos^{-1}(1 - (x + 1))}{\sqrt{2(x + 1)} \cdot (1 - (x + 1))} \] This simplifies to: \[ f(x) = \frac{\sin^{-1}(-x) \cdot x \cdot \cos^{-1}(-x)}{\sqrt{2(x + 1)} \cdot (-x)} \] ### Step 3: Simplify the expression Using the identities \( \sin^{-1}(-x) = -\sin^{-1}(x) \) and \( \cos^{-1}(-x) = \pi - \cos^{-1}(x) \): \[ f(x) = \frac{-\sin^{-1}(x) \cdot x \cdot (\pi - \cos^{-1}(x))}{\sqrt{2(x + 1)} \cdot (-x)} \] This simplifies to: \[ f(x) = \frac{\sin^{-1}(x) \cdot (\pi - \cos^{-1}(x))}{\sqrt{2(x + 1)}} \] ### Step 4: Find the limit as \( x \to 0^- \) As \( x \to 0^- \): - \( \sin^{-1}(x) \to 0 \) - \( \cos^{-1}(x) \to \frac{\pi}{2} \) Thus, \( \pi - \cos^{-1}(x) \to \frac{\pi}{2} \). Now substituting these values into \( f(x) \): \[ f(x) \to \frac{0 \cdot \frac{\pi}{2}}{\sqrt{2(1)}} = 0 \] ### Conclusion Therefore, the limit is: \[ L = \lim_{x \to 0^-} f(x) = 0 \]

To find the limit \( L = \lim_{x \to 0^-} f(x) \) where \[ f(x) = \frac{\sin^{-1}(1 - \{x\}) \cdot x \cdot \cos^{-1}(1 - \{x\})}{\sqrt{2\{x\}} \cdot (1 - \{x\})} \] we need to analyze the behavior of the function as \( x \) approaches \( 0 \) from the left. ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Numerical Value Type|26 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|24 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=(sin^(-1)(1-{x})xxcos^(-1)(1-{x}))/(sqrt(2{x})xx(1-{x})) , where {x} denotes the fractional part of x. R=lim_(xto0+) f(x) is equal to

let f(x)=(cos^-1(1-{x})sin^-1(1-{x}))/sqrt(2{x}(1-{x})) where {x} denotes the fractional part of x then

f(x)=sqrt((x-1)/(x-2{x})) , where {*} denotes the fractional part.

lim_(xto-1) (1)/(sqrt(|x|-{-x})) (where {x} denotes the fractional part of x) is equal to

If {x} denotes the fractional part of x, then lim_(xrarr1) (x sin {x})/(x-1) , is

lim_(x to 0) {(1+x)^((2)/(x))} (where {.} denotes the fractional part of x) is equal to

lim_(x->oo ){(e^x+pi^x)^(1/x)}= where {.} denotes the fractional part of x is equal to

lim_(xrarroo) {(e^(x)+pi^(x))^((1)/(x))} = (where {.} denotes the fractional part of x ) is equal to

lim_(x->1) (x-1){x}. where {.) denotes the fractional part, is equal to:

The range of f(x) =sin(sin^(-1){x}) . where { ·} denotes the fractional part of x, is

CENGAGE ENGLISH-LIMITS-Linked Comprehension Type
  1. Let f(x)=(sin^(-1)(1-{x})xxcos^(-1)(1-{x}))/(sqrt(2{x})xx(1-{x})), whe...

    Text Solution

    |

  2. Let f(x)=(sin^(-1)(1-{x})xxcos^(-1)(1-{x}))/(sqrt(2{x})xx(1-{x})), whe...

    Text Solution

    |

  3. let f(x)=(cos^-1(1-{x})sin^-1(1-{x}))/sqrt(2{x}(1-{x})) where {x} deno...

    Text Solution

    |

  4. A(i)=(x-a(i))/(|x-a(i)|),i=1,2,...,n," and "a(1)lta(2)lta(3)lt...lta(n...

    Text Solution

    |

  5. A(i)=(x-a(i))/(|x-a(i)|),i=1,2,...,n," and "a(1)lta(2)lta(3)lt...lta(n...

    Text Solution

    |

  6. A(i)=(x-a(i))/(|x-a(i)|),i=1,2,...,n," and "a(1)lta(2)lta(3)lt...lta(n...

    Text Solution

    |

  7. If L=lim(xto0) (sinx+ae^(x)+be^(-x)+clog(e)(1+x))/(x^(3)) exists finit...

    Text Solution

    |

  8. If L=lim(xto0)(sinx+ae^(x)+be^(-x)+clog(e)(1+x))/(x^(3)) exists finite...

    Text Solution

    |

  9. If L=lim(xto0)(sinx+ae^(x)+be^(-x)+clog(e)(1+x))/(x^(3)) exists finite...

    Text Solution

    |

  10. Let a(1)gta(2)gta(3)gt...gta(n)gt1. p(1)gtp(2)gtp(3)gt...gtp(n)gt0" ...

    Text Solution

    |

  11. Let a(1)gta(2)gta(3)gt...gta(n)gt1. p(1)gtp(2)gtp(3)gt...gtp(n)gt0" ...

    Text Solution

    |

  12. Let a(1)gta(2)gta(3)gt...gta(n)gt1. p(1)gtp(2)gtp(3)gt...gtp(n)gt0" ...

    Text Solution

    |

  13. If L=lim(xtooo) (x+1-sqrt(ax^(2)+x+3)) exists infinetely then The v...

    Text Solution

    |

  14. If L=underset(xtooo)lim(x+1-sqrt(ax^(2)+x+3)) exists finitely then T...

    Text Solution

    |

  15. Let f : R to R be a real function. The function f is double differenti...

    Text Solution

    |

  16. Let f : R to R be a real function. The function f is double differenti...

    Text Solution

    |

  17. Let f(x) be a polynomial satisfying lim(xtooo) (x^(2)f(x))/(2x^(5)+3)=...

    Text Solution

    |

  18. Let f(x) be a polynomial satisfying underset(xtooo)lim(x^(2)f(x))/(2x^...

    Text Solution

    |

  19. If lim (xto0)(f(x))/(sin ^(2)x) = 8, lim (xto0) (g(x))/( 2 cos x-ye ^(...

    Text Solution

    |

  20. If lim(xto0)(f(x))/(sin^(2)x)=8,lim(xto0)(g(x))/(2cosx-xe^(x)+x^(3)+x-...

    Text Solution

    |