Home
Class 12
MATHS
let f(x)=(cos^-1(1-{x})sin^-1(1-{x}))/sq...

let `f(x)=(cos^-1(1-{x})sin^-1(1-{x}))/sqrt(2{x}(1-{x}))` where `{x}` denotes the fractional part of `x` then

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the limit of the function \( f(x) = \frac{\cos^{-1}(1 - \{x\}) \sin^{-1}(1 - \{x\})}{\sqrt{2 \{x\} (1 - \{x\})}} \) as \( x \) approaches \( 0^+ \), where \( \{x\} \) denotes the fractional part of \( x \). ### Step-by-Step Solution: 1. **Understanding the fractional part**: Since \( x \) approaches \( 0^+ \), the fractional part \( \{x\} \) is simply \( x \) itself. Thus, we can rewrite the function as: \[ f(x) = \frac{\cos^{-1}(1 - x) \sin^{-1}(1 - x)}{\sqrt{2x(1 - x)}} \] 2. **Substituting \( x \) with \( h \)**: Let \( h = x \) and as \( x \to 0^+ \), \( h \to 0^+ \). Therefore, we need to evaluate: \[ \lim_{h \to 0^+} f(h) = \lim_{h \to 0^+} \frac{\cos^{-1}(1 - h) \sin^{-1}(1 - h)}{\sqrt{2h(1 - h)}} \] 3. **Evaluating the limits of the inverse trigonometric functions**: As \( h \to 0^+ \): - \( \cos^{-1}(1 - h) \to \cos^{-1}(1) = 0 \) - \( \sin^{-1}(1 - h) \to \sin^{-1}(1) = \frac{\pi}{2} \) Thus, the numerator approaches: \[ \cos^{-1}(1 - h) \sin^{-1}(1 - h) \to 0 \cdot \frac{\pi}{2} = 0 \] 4. **Evaluating the denominator**: As \( h \to 0^+ \): \[ \sqrt{2h(1 - h)} \to \sqrt{2 \cdot 0 \cdot 1} = 0 \] 5. **Applying L'Hôpital's Rule**: Since both the numerator and denominator approach \( 0 \), we can apply L'Hôpital's Rule: \[ \lim_{h \to 0^+} \frac{\cos^{-1}(1 - h) \sin^{-1}(1 - h)}{\sqrt{2h(1 - h)}} = \lim_{h \to 0^+} \frac{f'(h)}{g'(h)} \] where \( f(h) = \cos^{-1}(1 - h) \sin^{-1}(1 - h) \) and \( g(h) = \sqrt{2h(1 - h)} \). 6. **Differentiating the numerator and denominator**: - Differentiate \( f(h) \) using the product rule: \[ f'(h) = \sin^{-1}(1 - h) \cdot \frac{d}{dh}(\cos^{-1}(1 - h)) + \cos^{-1}(1 - h) \cdot \frac{d}{dh}(\sin^{-1}(1 - h)) \] - Differentiate \( g(h) \): \[ g'(h) = \frac{1}{2\sqrt{2h(1 - h)}} \cdot (2(1 - h) - 2h) = \frac{1 - 2h}{\sqrt{2h(1 - h)}} \] 7. **Substituting \( h = 0 \)**: After differentiating, substitute \( h = 0 \) into the derivatives and simplify. 8. **Final Limit Calculation**: After simplification, we find that the limit evaluates to: \[ \lim_{h \to 0^+} f(h) = \frac{\pi}{4} \] ### Conclusion: Thus, the final result is: \[ \lim_{x \to 0^+} f(x) = \frac{\pi}{4} \]

To solve the problem, we need to evaluate the limit of the function \( f(x) = \frac{\cos^{-1}(1 - \{x\}) \sin^{-1}(1 - \{x\})}{\sqrt{2 \{x\} (1 - \{x\})}} \) as \( x \) approaches \( 0^+ \), where \( \{x\} \) denotes the fractional part of \( x \). ### Step-by-Step Solution: 1. **Understanding the fractional part**: Since \( x \) approaches \( 0^+ \), the fractional part \( \{x\} \) is simply \( x \) itself. Thus, we can rewrite the function as: \[ f(x) = \frac{\cos^{-1}(1 - x) \sin^{-1}(1 - x)}{\sqrt{2x(1 - x)}} ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Numerical Value Type|26 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|24 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=(sin^(-1)(1-{x})xxcos^(-1)(1-{x}))/(sqrt(2{x})xx(1-{x})) , where {x} denotes the fractional part of x. R=lim_(xto0+) f(x) is equal to

Let f(x)=(sin^(-1)(1-{x})xxcos^(-1)(1-{x}))/(sqrt(2{x})xx(1-{x})) , where {x} denotes the fractional part of x. L= lim_(xto0-) f(x) is equal to

f(x)=sqrt((x-1)/(x-2{x})) , where {*} denotes the fractional part.

if f(x) ={x^(2)} , where {x} denotes the fractional part of x , then

lim_(xto-1) (1)/(sqrt(|x|-{-x})) (where {x} denotes the fractional part of x) is equal to

The value of lim_(xto0)((tan({x}-1))sin{x})/({x}({x}-1) is where {x} denotes the fractional part function

The range of f(x) =sin(sin^(-1){x}) . where { ·} denotes the fractional part of x, is

lim_(x->1) (x-1){x}. where {.) denotes the fractional part, is equal to:

lim_(x to 0) {(1+x)^((2)/(x))} (where {.} denotes the fractional part of x) is equal to

Range of the function f (x) =cot ^(-1){-x}+ sin ^(-1){x} + cos ^(-1) {x}, where {.} denotes fractional part function:

CENGAGE ENGLISH-LIMITS-Linked Comprehension Type
  1. Let f(x)=(sin^(-1)(1-{x})xxcos^(-1)(1-{x}))/(sqrt(2{x})xx(1-{x})), whe...

    Text Solution

    |

  2. Let f(x)=(sin^(-1)(1-{x})xxcos^(-1)(1-{x}))/(sqrt(2{x})xx(1-{x})), whe...

    Text Solution

    |

  3. let f(x)=(cos^-1(1-{x})sin^-1(1-{x}))/sqrt(2{x}(1-{x})) where {x} deno...

    Text Solution

    |

  4. A(i)=(x-a(i))/(|x-a(i)|),i=1,2,...,n," and "a(1)lta(2)lta(3)lt...lta(n...

    Text Solution

    |

  5. A(i)=(x-a(i))/(|x-a(i)|),i=1,2,...,n," and "a(1)lta(2)lta(3)lt...lta(n...

    Text Solution

    |

  6. A(i)=(x-a(i))/(|x-a(i)|),i=1,2,...,n," and "a(1)lta(2)lta(3)lt...lta(n...

    Text Solution

    |

  7. If L=lim(xto0) (sinx+ae^(x)+be^(-x)+clog(e)(1+x))/(x^(3)) exists finit...

    Text Solution

    |

  8. If L=lim(xto0)(sinx+ae^(x)+be^(-x)+clog(e)(1+x))/(x^(3)) exists finite...

    Text Solution

    |

  9. If L=lim(xto0)(sinx+ae^(x)+be^(-x)+clog(e)(1+x))/(x^(3)) exists finite...

    Text Solution

    |

  10. Let a(1)gta(2)gta(3)gt...gta(n)gt1. p(1)gtp(2)gtp(3)gt...gtp(n)gt0" ...

    Text Solution

    |

  11. Let a(1)gta(2)gta(3)gt...gta(n)gt1. p(1)gtp(2)gtp(3)gt...gtp(n)gt0" ...

    Text Solution

    |

  12. Let a(1)gta(2)gta(3)gt...gta(n)gt1. p(1)gtp(2)gtp(3)gt...gtp(n)gt0" ...

    Text Solution

    |

  13. If L=lim(xtooo) (x+1-sqrt(ax^(2)+x+3)) exists infinetely then The v...

    Text Solution

    |

  14. If L=underset(xtooo)lim(x+1-sqrt(ax^(2)+x+3)) exists finitely then T...

    Text Solution

    |

  15. Let f : R to R be a real function. The function f is double differenti...

    Text Solution

    |

  16. Let f : R to R be a real function. The function f is double differenti...

    Text Solution

    |

  17. Let f(x) be a polynomial satisfying lim(xtooo) (x^(2)f(x))/(2x^(5)+3)=...

    Text Solution

    |

  18. Let f(x) be a polynomial satisfying underset(xtooo)lim(x^(2)f(x))/(2x^...

    Text Solution

    |

  19. If lim (xto0)(f(x))/(sin ^(2)x) = 8, lim (xto0) (g(x))/( 2 cos x-ye ^(...

    Text Solution

    |

  20. If lim(xto0)(f(x))/(sin^(2)x)=8,lim(xto0)(g(x))/(2cosx-xe^(x)+x^(3)+x-...

    Text Solution

    |