Home
Class 12
MATHS
A(i)=(x-a(i))/(|x-a(i)|),i=1,2,...,n," a...

`A_(i)=(x-a_(i))/(|x-a_(i)|),i=1,2,...,n," and "a_(1)lta_(2)lta_(3)lt...lta_(n).`
If `1lemlen,minN,` then the value of `L=lim_(xtoa_(m)) (A_(1)A_(2)...A_(n))`is (a) 2 (b) -1 (c) not exist (d) 1

A

2

B

-1

C

not exist

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the expression given and evaluate the limit \( L = \lim_{x \to a_m} (A_1 A_2 \ldots A_n) \). ### Step 1: Understanding \( A_i \) The expression for \( A_i \) is given as: \[ A_i = \frac{x - a_i}{|x - a_i|} \] This expression will yield different values based on the position of \( x \) relative to \( a_i \). ### Step 2: Analyzing the left neighborhood of \( a_m \) Assume \( x \) approaches \( a_m \) from the left (i.e., \( x \to a_m^- \)): - For \( i < m \) (i.e., \( A_1, A_2, \ldots, A_{m-1} \)): - \( x - a_i < 0 \) (since \( x < a_m < a_i \)) - Thus, \( A_i = \frac{x - a_i}{|x - a_i|} = -1 \) for \( i = 1, 2, \ldots, m-1 \). - For \( i = m \): - \( A_m = \frac{x - a_m}{|x - a_m|} = \frac{x - a_m}{-(x - a_m)} = -1 \). - For \( i > m \) (i.e., \( A_{m+1}, \ldots, A_n \)): - \( x - a_i < 0 \) (since \( x < a_m < a_i \)) - Thus, \( A_i = -1 \) for \( i = m+1, \ldots, n \). ### Step 3: Calculating the product \( A_1 A_2 \ldots A_n \) from the left From the above analysis: - There are \( m-1 \) terms equal to \(-1\) from \( A_1 \) to \( A_{m-1} \). - \( A_m = -1 \). - There are \( n-m \) terms equal to \(-1\) from \( A_{m+1} \) to \( A_n \). The total number of \(-1\) terms is: \[ (m-1) + 1 + (n-m) = n \] Thus, the product is: \[ A_1 A_2 \ldots A_n = (-1)^n \] ### Step 4: Analyzing the right neighborhood of \( a_m \) Now, let \( x \) approach \( a_m \) from the right (i.e., \( x \to a_m^+ \)): - For \( i < m \): - \( A_i = 1 \) for \( i = 1, 2, \ldots, m-1 \). - For \( i = m \): - \( A_m = 1 \). - For \( i > m \): - \( A_i = 1 \) for \( i = m+1, \ldots, n \). The total number of \( 1 \) terms is: \[ (m-1) + 1 + (n-m) = n \] Thus, the product is: \[ A_1 A_2 \ldots A_n = 1^n = 1 \] ### Step 5: Evaluating the limit We have: - \( \lim_{x \to a_m^-} (A_1 A_2 \ldots A_n) = (-1)^n \) - \( \lim_{x \to a_m^+} (A_1 A_2 \ldots A_n) = 1 \) Since these two limits are not equal, the overall limit \( L \) does not exist. ### Conclusion Thus, the value of \( L \) is: \[ \boxed{\text{not exist}} \]

To solve the problem, we need to analyze the expression given and evaluate the limit \( L = \lim_{x \to a_m} (A_1 A_2 \ldots A_n) \). ### Step 1: Understanding \( A_i \) The expression for \( A_i \) is given as: \[ A_i = \frac{x - a_i}{|x - a_i|} \] This expression will yield different values based on the position of \( x \) relative to \( a_i \). ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Numerical Value Type|26 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|24 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

A_(i)=(x-a_(i))/(|x-a_(i)|),i=1,2,...,n," and "a_(1)lta_(2)lta_(3)lt...lta_(n). If 1lemlen,minN, then the value of R=lim_(xtoa_(m)+) (A_(1)A_(2)...A_(n)) is

A_(i)=(x-a_(i))/(|x-a_(i)|),i=1,2,...,n," and "a_(1)lta_(2)lta_(3)lt...lta_(n). If 1lemlen,minN, then lim_(xtoa_(m)) (A_(1)A_(2)...A_(n))

If |a_(i)|lt1lamda_(i)ge0 for i=1,2,3,.......nandlamda_(1)+lamda_(2)+.......+lamda_(n)=1 then the value of |lamda_(1)a_(1)+lamda_(2)a_(2)+.......+lamda_(n)a_(n)| is :

The value of lim_(ntooo)a_(n) when a_(n+1)=sqrt(2+a_(n)), n=1,2,3, ….. is

If a_(i)gt0 for i u=1, 2, 3, … ,n and a_(1)a_(2)…a_(n)=1, then the minimum value of (1+a_(1))(1+a_(2))…(1+a_(n)) , is

If a_(1),a_(2),a_(3),".....",a_(n) are in HP, than prove that a_(1)a_(2)+a_(2)a_(3)+a_(3)a_(4)+"....."+a_(n-1)a_(n)=(n-1)a_(1)a_(n)

For an increasing G.P. a_(1), a_(2), a_(3),.....a_(n), " If " a_(6) = 4a_(4), a_(9) - a_(7) = 192 , then the value of sum_(l=1)^(oo) (1)/(a_(i)) is

If a_(1) = 2 and a_(n) - a_(n-1) = 2n (n ge 2) , find the value of a_(1) + a_(2) + a_(3)+…+a_(20) .

If a_(1), a_(2), a_(3).... A_(n) in R^(+) and a_(1).a_(2).a_(3).... A_(n) = 1 , then minimum value of (1 + a_(1) + a_(1)^(2)) (a + a_(2) + a_(2)^(2)) (1 + a_(3) + a_(3)^(2))..... (1 + a_(n) + a_(n)^(2)) is equal to

If (1 + x + x^(2) + x^(3))^(n)= a_(0) + a_(1)x + a_(2)x^(2) + a_(3) x^(3) +...+ a_(3n) x^(3n) , then the value of a_(0) + a_(4) +a_(8) + a_(12)+….. is

CENGAGE ENGLISH-LIMITS-Linked Comprehension Type
  1. Let f(x)=(sin^(-1)(1-{x})xxcos^(-1)(1-{x}))/(sqrt(2{x})xx(1-{x})), whe...

    Text Solution

    |

  2. Let f(x)=(sin^(-1)(1-{x})xxcos^(-1)(1-{x}))/(sqrt(2{x})xx(1-{x})), whe...

    Text Solution

    |

  3. let f(x)=(cos^-1(1-{x})sin^-1(1-{x}))/sqrt(2{x}(1-{x})) where {x} deno...

    Text Solution

    |

  4. A(i)=(x-a(i))/(|x-a(i)|),i=1,2,...,n," and "a(1)lta(2)lta(3)lt...lta(n...

    Text Solution

    |

  5. A(i)=(x-a(i))/(|x-a(i)|),i=1,2,...,n," and "a(1)lta(2)lta(3)lt...lta(n...

    Text Solution

    |

  6. A(i)=(x-a(i))/(|x-a(i)|),i=1,2,...,n," and "a(1)lta(2)lta(3)lt...lta(n...

    Text Solution

    |

  7. If L=lim(xto0) (sinx+ae^(x)+be^(-x)+clog(e)(1+x))/(x^(3)) exists finit...

    Text Solution

    |

  8. If L=lim(xto0)(sinx+ae^(x)+be^(-x)+clog(e)(1+x))/(x^(3)) exists finite...

    Text Solution

    |

  9. If L=lim(xto0)(sinx+ae^(x)+be^(-x)+clog(e)(1+x))/(x^(3)) exists finite...

    Text Solution

    |

  10. Let a(1)gta(2)gta(3)gt...gta(n)gt1. p(1)gtp(2)gtp(3)gt...gtp(n)gt0" ...

    Text Solution

    |

  11. Let a(1)gta(2)gta(3)gt...gta(n)gt1. p(1)gtp(2)gtp(3)gt...gtp(n)gt0" ...

    Text Solution

    |

  12. Let a(1)gta(2)gta(3)gt...gta(n)gt1. p(1)gtp(2)gtp(3)gt...gtp(n)gt0" ...

    Text Solution

    |

  13. If L=lim(xtooo) (x+1-sqrt(ax^(2)+x+3)) exists infinetely then The v...

    Text Solution

    |

  14. If L=underset(xtooo)lim(x+1-sqrt(ax^(2)+x+3)) exists finitely then T...

    Text Solution

    |

  15. Let f : R to R be a real function. The function f is double differenti...

    Text Solution

    |

  16. Let f : R to R be a real function. The function f is double differenti...

    Text Solution

    |

  17. Let f(x) be a polynomial satisfying lim(xtooo) (x^(2)f(x))/(2x^(5)+3)=...

    Text Solution

    |

  18. Let f(x) be a polynomial satisfying underset(xtooo)lim(x^(2)f(x))/(2x^...

    Text Solution

    |

  19. If lim (xto0)(f(x))/(sin ^(2)x) = 8, lim (xto0) (g(x))/( 2 cos x-ye ^(...

    Text Solution

    |

  20. If lim(xto0)(f(x))/(sin^(2)x)=8,lim(xto0)(g(x))/(2cosx-xe^(x)+x^(3)+x-...

    Text Solution

    |