Home
Class 12
MATHS
A(i)=(x-a(i))/(|x-a(i)|),i=1,2,...,n," a...

`A_(i)=(x-a_(i))/(|x-a_(i)|),i=1,2,...,n," and "a_(1)lta_(2)lta_(3)lt...lta_(n).`
If `1lemlen,minN,` then `lim_(xtoa_(m)) (A_(1)A_(2)...A_(n))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given in the question, we will follow these steps: ### Step 1: Understand the Given Expression We have: \[ A_i = \frac{x - a_i}{|x - a_i|}, \quad i = 1, 2, \ldots, n \] where \( a_1 < a_2 < \ldots < a_n \) and \( 1 \leq m \leq n \). ### Step 2: Define the Limit We need to find: \[ \lim_{x \to a_m} (A_1 A_2 \ldots A_n) \] ### Step 3: Analyze the Behavior of \( A_i \) The expression \( A_i \) behaves differently depending on whether \( x \) approaches \( a_m \) from the left (denoted \( a_m^- \)) or from the right (denoted \( a_m^+ \)). - **For \( x \to a_m^+ \)** (approaching from the right): - If \( x > a_i \) for \( i < m \), then \( A_i = 1 \). - If \( x = a_m \), \( A_m = 0 \) (since \( x - a_m = 0 \)). - If \( x < a_i \) for \( i > m \), then \( A_i = -1 \). Thus, for \( x \to a_m^+ \): \[ A_1 A_2 \ldots A_n = 1^{m-1} \cdot 0 \cdot (-1)^{n-m} = 0 \] - **For \( x \to a_m^- \)** (approaching from the left): - If \( x < a_i \) for \( i \leq m \), then \( A_i = -1 \) for \( i = 1, 2, \ldots, m \). - If \( x = a_m \), \( A_m = 0 \). - If \( x > a_i \) for \( i > m \), then \( A_i = 1 \). Thus, for \( x \to a_m^- \): \[ A_1 A_2 \ldots A_n = (-1)^m \cdot 1^{n-m} = (-1)^m \] ### Step 4: Evaluate the Limits Now we evaluate the limits: - From the right: \[ \lim_{x \to a_m^+} (A_1 A_2 \ldots A_n) = 0 \] - From the left: \[ \lim_{x \to a_m^-} (A_1 A_2 \ldots A_n) = (-1)^m \] ### Step 5: Conclusion Since the left-hand limit and the right-hand limit are not equal: \[ \lim_{x \to a_m} (A_1 A_2 \ldots A_n) \text{ does not exist.} \] ### Final Answer The limit does not exist. ---

To solve the limit problem given in the question, we will follow these steps: ### Step 1: Understand the Given Expression We have: \[ A_i = \frac{x - a_i}{|x - a_i|}, \quad i = 1, 2, \ldots, n \] where \( a_1 < a_2 < \ldots < a_n \) and \( 1 \leq m \leq n \). ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Numerical Value Type|26 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|24 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

A_(i)=(x-a_(i))/(|x-a_(i)|),i=1,2,...,n," and "a_(1)lta_(2)lta_(3)lt...lta_(n). If 1lemlen,minN, then the value of L=lim_(xtoa_(m)) (A_(1)A_(2)...A_(n)) is (a) 2 (b) -1 (c) not exist (d) 1

A_(i)=(x-a_(i))/(|x-a_(i)|),i=1,2,...,n," and "a_(1)lta_(2)lta_(3)lt...lta_(n). If 1lemlen,minN, then the value of R=lim_(xtoa_(m)+) (A_(1)A_(2)...A_(n)) is

If a_(1), a_(2), a_(3).... A_(n) in R^(+) and a_(1).a_(2).a_(3).... A_(n) = 1 , then minimum value of (1 + a_(1) + a_(1)^(2)) (a + a_(2) + a_(2)^(2)) (1 + a_(3) + a_(3)^(2))..... (1 + a_(n) + a_(n)^(2)) is equal to

a1,a2,a3.....an are in H.P. (a_(1))/(a_(2)+a_(3)+ . . .+a_(n)),(a_(2))/(a_(1)+a_(3)+ . . . +a_(n)),(a_(3))/(a_(1)+a_(2)+a_(4)+ . . .+a_(n)), . . .,(a_(n))/(a_(1)+a_(2)+ . . . +a_(n-1)) are in

If |a_(i)|lt1lamda_(i)ge0 for i=1,2,3,.......nandlamda_(1)+lamda_(2)+.......+lamda_(n)=1 then the value of |lamda_(1)a_(1)+lamda_(2)a_(2)+.......+lamda_(n)a_(n)| is :

If a_(i)gt0 for i u=1, 2, 3, … ,n and a_(1)a_(2)…a_(n)=1, then the minimum value of (1+a_(1))(1+a_(2))…(1+a_(n)) , is

If A_(1),A_(2),A_(3),...,A_(n),a_(1),a_(2),a_(3),...a_(n),a,b,c in R show that the roots of the equation (A_(1)^(2))/(x-a_(1))+(A_(2)^(2))/(x-a_(2))+(A_(3)^(2))/(x-a_(3))+…+(A_(n)^(2))/(x-a_(n)) =ab^(2)+c^(2) x+ac are real.

Statement I If A gt 0 , B gt 0 and A+B= pi/3 , then the maximum value of tan A tan B is 1/3 . Statement II If a_(1)+a_(2)+a_(3)+...+a_(n)=k (constant), then the value a_(1)a_(2)a_(3)...a_(n) is greatest when a_(1)=a_(2)=a_(3)=...+a_(n)

If a_(n+1)=a_(n-1)+2a_(n) for n=2,3,4, . . . and a_(1)=1 and a_(2)=1 , then a_(5) =

If A_(1), A_(2),..,A_(n) are any n events, then

CENGAGE ENGLISH-LIMITS-Linked Comprehension Type
  1. Let f(x)=(sin^(-1)(1-{x})xxcos^(-1)(1-{x}))/(sqrt(2{x})xx(1-{x})), whe...

    Text Solution

    |

  2. Let f(x)=(sin^(-1)(1-{x})xxcos^(-1)(1-{x}))/(sqrt(2{x})xx(1-{x})), whe...

    Text Solution

    |

  3. let f(x)=(cos^-1(1-{x})sin^-1(1-{x}))/sqrt(2{x}(1-{x})) where {x} deno...

    Text Solution

    |

  4. A(i)=(x-a(i))/(|x-a(i)|),i=1,2,...,n," and "a(1)lta(2)lta(3)lt...lta(n...

    Text Solution

    |

  5. A(i)=(x-a(i))/(|x-a(i)|),i=1,2,...,n," and "a(1)lta(2)lta(3)lt...lta(n...

    Text Solution

    |

  6. A(i)=(x-a(i))/(|x-a(i)|),i=1,2,...,n," and "a(1)lta(2)lta(3)lt...lta(n...

    Text Solution

    |

  7. If L=lim(xto0) (sinx+ae^(x)+be^(-x)+clog(e)(1+x))/(x^(3)) exists finit...

    Text Solution

    |

  8. If L=lim(xto0)(sinx+ae^(x)+be^(-x)+clog(e)(1+x))/(x^(3)) exists finite...

    Text Solution

    |

  9. If L=lim(xto0)(sinx+ae^(x)+be^(-x)+clog(e)(1+x))/(x^(3)) exists finite...

    Text Solution

    |

  10. Let a(1)gta(2)gta(3)gt...gta(n)gt1. p(1)gtp(2)gtp(3)gt...gtp(n)gt0" ...

    Text Solution

    |

  11. Let a(1)gta(2)gta(3)gt...gta(n)gt1. p(1)gtp(2)gtp(3)gt...gtp(n)gt0" ...

    Text Solution

    |

  12. Let a(1)gta(2)gta(3)gt...gta(n)gt1. p(1)gtp(2)gtp(3)gt...gtp(n)gt0" ...

    Text Solution

    |

  13. If L=lim(xtooo) (x+1-sqrt(ax^(2)+x+3)) exists infinetely then The v...

    Text Solution

    |

  14. If L=underset(xtooo)lim(x+1-sqrt(ax^(2)+x+3)) exists finitely then T...

    Text Solution

    |

  15. Let f : R to R be a real function. The function f is double differenti...

    Text Solution

    |

  16. Let f : R to R be a real function. The function f is double differenti...

    Text Solution

    |

  17. Let f(x) be a polynomial satisfying lim(xtooo) (x^(2)f(x))/(2x^(5)+3)=...

    Text Solution

    |

  18. Let f(x) be a polynomial satisfying underset(xtooo)lim(x^(2)f(x))/(2x^...

    Text Solution

    |

  19. If lim (xto0)(f(x))/(sin ^(2)x) = 8, lim (xto0) (g(x))/( 2 cos x-ye ^(...

    Text Solution

    |

  20. If lim(xto0)(f(x))/(sin^(2)x)=8,lim(xto0)(g(x))/(2cosx-xe^(x)+x^(3)+x-...

    Text Solution

    |