Home
Class 12
MATHS
If L=lim(xto0)(sinx+ae^(x)+be^(-x)+clog(...

If `L=lim_(xto0)(sinx+ae^(x)+be^(-x)+clog_(e)(1+x))/(x^(3))` exists finitely, then
Equation `ax^(2)+bx+c=0` has

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will evaluate the limit and derive the conditions for the coefficients \( a \), \( b \), and \( c \) such that the limit exists finitely. ### Step 1: Write the limit expression We start with the limit expression: \[ L = \lim_{x \to 0} \frac{\sin x + a e^x + b e^{-x} + c \ln(1+x)}{x^3} \] ### Step 2: Expand the functions using Taylor series We will expand each function in the numerator using Taylor series around \( x = 0 \): 1. **For \( \sin x \)**: \[ \sin x = x - \frac{x^3}{6} + O(x^5) \] 2. **For \( e^x \)**: \[ e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + O(x^4) \] 3. **For \( e^{-x} \)**: \[ e^{-x} = 1 - x + \frac{x^2}{2} - \frac{x^3}{6} + O(x^4) \] 4. **For \( \ln(1+x) \)**: \[ \ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + O(x^4) \] ### Step 3: Substitute the expansions into the limit Substituting these expansions into the limit gives: \[ \sin x + a e^x + b e^{-x} + c \ln(1+x) = \left( x - \frac{x^3}{6} \right) + a \left( 1 + x + \frac{x^2}{2} + \frac{x^3}{6} \right) + b \left( 1 - x + \frac{x^2}{2} - \frac{x^3}{6} \right) + c \left( x - \frac{x^2}{2} + \frac{x^3}{3} \right) \] Combining the terms: \[ = (a + b + c)x + \left( a - b - \frac{c}{2} \right)x^2 + \left( -\frac{1}{6} + \frac{a}{6} - \frac{b}{6} + \frac{c}{3} \right)x^3 + O(x^4) \] ### Step 4: Formulate the limit expression Now, we can write: \[ L = \lim_{x \to 0} \frac{(a + b + c)x + \left( a - b - \frac{c}{2} \right)x^2 + \left( -\frac{1}{6} + \frac{a}{6} - \frac{b}{6} + \frac{c}{3} \right)x^3 + O(x^4)}{x^3} \] ### Step 5: Analyze the limit For the limit \( L \) to exist finitely, the coefficients of \( x \) and \( x^2 \) must be zero: 1. \( a + b + c = 0 \) 2. \( a - b - \frac{c}{2} = 0 \) The coefficient of \( x^3 \) will determine the limit: 3. \( -\frac{1}{6} + \frac{a}{6} - \frac{b}{6} + \frac{c}{3} = 0 \) ### Step 6: Solve the equations From the equations: 1. \( a + b + c = 0 \) 2. \( a - b - \frac{c}{2} = 0 \) 3. \( -\frac{1}{6} + \frac{a}{6} - \frac{b}{6} + \frac{c}{3} = 0 \) We can solve these equations step by step. From equation (1), we can express \( c \): \[ c = -a - b \] Substituting \( c \) into equation (2): \[ a - b - \frac{-a - b}{2} = 0 \implies a - b + \frac{a}{2} + \frac{b}{2} = 0 \implies \frac{3a}{2} - \frac{b}{2} = 0 \implies 3a = b \] Substituting \( b = 3a \) into equation (1): \[ a + 3a + c = 0 \implies 4a + c = 0 \implies c = -4a \] Now substituting \( b \) and \( c \) into equation (3): \[ -\frac{1}{6} + \frac{a}{6} - \frac{3a}{6} + \frac{-4a}{3} = 0 \] Multiply through by 6 to eliminate the fractions: \[ -1 + a - 3a - 8a = 0 \implies -1 - 10a = 0 \implies a = -\frac{1}{10} \] Now substituting back to find \( b \) and \( c \): \[ b = 3(-\frac{1}{10}) = -\frac{3}{10}, \quad c = -4(-\frac{1}{10}) = \frac{4}{10} = \frac{2}{5} \] ### Step 7: Form the quadratic equation The quadratic equation becomes: \[ -\frac{1}{10}x^2 - \frac{3}{10}x + \frac{2}{5} = 0 \] Multiplying through by -10 to eliminate the fractions: \[ x^2 + 3x - 4 = 0 \] ### Step 8: Factor the quadratic equation Factoring gives: \[ (x + 4)(x - 1) = 0 \] Thus, the roots are: \[ x = -4 \quad \text{and} \quad x = 1 \] ### Conclusion The quadratic equation \( ax^2 + bx + c = 0 \) has two real roots.

To solve the problem step by step, we will evaluate the limit and derive the conditions for the coefficients \( a \), \( b \), and \( c \) such that the limit exists finitely. ### Step 1: Write the limit expression We start with the limit expression: \[ L = \lim_{x \to 0} \frac{\sin x + a e^x + b e^{-x} + c \ln(1+x)}{x^3} \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Numerical Value Type|26 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|24 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

If L=lim_(xto0) (sinx+ae^(x)+be^(-x)+clog_(e)(1+x))/(x^(3)) exists finitely, then The value of L is

If L=lim_(xto0)(sinx+ae^(x)+be^(-x)+clog_(e)(1+x))/(x^(3)) exists finitely, then The solutions set of ||x+c|-2a|lt4b is

lim_(xto0)((e^(x)-1)/x)^(1//x)

lim_(xto0) (e^(tanx)-e^x)/(tanx-x)=

lim_(xto0) (sinx^(@))/(x) = _________

Evaluate : lim_(xto0) (e^(x) -e^(-x))/x

Evaluate lim_(xto0^(+))(sinx)^(x)

The value of lim_(xto0) (1+sinx-cosx+log(1-x))/(x^(3)) is

If lim_(xrarr0) (e^(ax)-e^(x)-x)/(x^(2))=b (finite), then

Let L=lim_(xto0) (a-sqrt(a^(2)-x^(2))-(x^(2))/(4))/(x^(4)),agt0 . If L is finite, then

CENGAGE ENGLISH-LIMITS-Linked Comprehension Type
  1. Let f(x)=(sin^(-1)(1-{x})xxcos^(-1)(1-{x}))/(sqrt(2{x})xx(1-{x})), whe...

    Text Solution

    |

  2. Let f(x)=(sin^(-1)(1-{x})xxcos^(-1)(1-{x}))/(sqrt(2{x})xx(1-{x})), whe...

    Text Solution

    |

  3. let f(x)=(cos^-1(1-{x})sin^-1(1-{x}))/sqrt(2{x}(1-{x})) where {x} deno...

    Text Solution

    |

  4. A(i)=(x-a(i))/(|x-a(i)|),i=1,2,...,n," and "a(1)lta(2)lta(3)lt...lta(n...

    Text Solution

    |

  5. A(i)=(x-a(i))/(|x-a(i)|),i=1,2,...,n," and "a(1)lta(2)lta(3)lt...lta(n...

    Text Solution

    |

  6. A(i)=(x-a(i))/(|x-a(i)|),i=1,2,...,n," and "a(1)lta(2)lta(3)lt...lta(n...

    Text Solution

    |

  7. If L=lim(xto0) (sinx+ae^(x)+be^(-x)+clog(e)(1+x))/(x^(3)) exists finit...

    Text Solution

    |

  8. If L=lim(xto0)(sinx+ae^(x)+be^(-x)+clog(e)(1+x))/(x^(3)) exists finite...

    Text Solution

    |

  9. If L=lim(xto0)(sinx+ae^(x)+be^(-x)+clog(e)(1+x))/(x^(3)) exists finite...

    Text Solution

    |

  10. Let a(1)gta(2)gta(3)gt...gta(n)gt1. p(1)gtp(2)gtp(3)gt...gtp(n)gt0" ...

    Text Solution

    |

  11. Let a(1)gta(2)gta(3)gt...gta(n)gt1. p(1)gtp(2)gtp(3)gt...gtp(n)gt0" ...

    Text Solution

    |

  12. Let a(1)gta(2)gta(3)gt...gta(n)gt1. p(1)gtp(2)gtp(3)gt...gtp(n)gt0" ...

    Text Solution

    |

  13. If L=lim(xtooo) (x+1-sqrt(ax^(2)+x+3)) exists infinetely then The v...

    Text Solution

    |

  14. If L=underset(xtooo)lim(x+1-sqrt(ax^(2)+x+3)) exists finitely then T...

    Text Solution

    |

  15. Let f : R to R be a real function. The function f is double differenti...

    Text Solution

    |

  16. Let f : R to R be a real function. The function f is double differenti...

    Text Solution

    |

  17. Let f(x) be a polynomial satisfying lim(xtooo) (x^(2)f(x))/(2x^(5)+3)=...

    Text Solution

    |

  18. Let f(x) be a polynomial satisfying underset(xtooo)lim(x^(2)f(x))/(2x^...

    Text Solution

    |

  19. If lim (xto0)(f(x))/(sin ^(2)x) = 8, lim (xto0) (g(x))/( 2 cos x-ye ^(...

    Text Solution

    |

  20. If lim(xto0)(f(x))/(sin^(2)x)=8,lim(xto0)(g(x))/(2cosx-xe^(x)+x^(3)+x-...

    Text Solution

    |