Home
Class 12
MATHS
Let a(1)gta(2)gta(3)gt...gta(n)gt1. p(...

Let` a_(1)gta_(2)gta_(3)gt...gta_(n)gt1.`
`p_(1)gtp_(2)gtp_(3)gt...gtp_(n)gt0" such that "p_(1)+p_(2)+p_(3)+...+p_(n)=1.`
Also, `F(x)=(p_(1)a_(1)^(x)+p_(n)a_(n)^(x))^(1//x)`.
`lim_(xto0^(+)) F(x)" equals "`

A

`{:(a,b,c,d),(s,r,q,p):}`

B

`{:(a,b,c,d),(q,p,s,p):}`

C

`{:(a,b,c,d),(s,r,p,q):}`

D

`{:(a,b,c,d),(p,p,q,r):}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given in the question, we need to analyze the function \( F(x) \) defined as: \[ F(x) = (p_1 a_1^x + p_n a_n^x)^{\frac{1}{x}} \] We are tasked with finding: \[ \lim_{x \to 0^+} F(x) \] ### Step 1: Rewrite the Function First, we can rewrite \( F(x) \) in a more manageable form. Recognizing that as \( x \to 0 \), both \( a_1^x \) and \( a_n^x \) approach 1 (since any number raised to the power of 0 is 1), we can express: \[ F(x) = (p_1 a_1^x + p_n a_n^x)^{\frac{1}{x}} = (p_1 \cdot 1 + p_n \cdot 1)^{\frac{1}{x}} = (p_1 + p_n)^{\frac{1}{x}} \] ### Step 2: Evaluate the Limit Next, we need to evaluate the limit: \[ \lim_{x \to 0^+} F(x) = \lim_{x \to 0^+} (p_1 a_1^x + p_n a_n^x)^{\frac{1}{x}} \] Using the property of limits, we can take the logarithm of \( F(x) \): \[ \ln F(x) = \frac{1}{x} \ln(p_1 a_1^x + p_n a_n^x) \] ### Step 3: Apply L'Hôpital's Rule As \( x \to 0^+ \), both the numerator and denominator approach 0, so we can apply L'Hôpital's Rule: \[ \lim_{x \to 0^+} \frac{\ln(p_1 a_1^x + p_n a_n^x)}{x} \] Differentiating the numerator and denominator: 1. The derivative of the numerator \( \ln(p_1 a_1^x + p_n a_n^x) \) is: \[ \frac{d}{dx} \ln(p_1 a_1^x + p_n a_n^x) = \frac{p_1 a_1^x \ln a_1 + p_n a_n^x \ln a_n}{p_1 a_1^x + p_n a_n^x} \] 2. The derivative of the denominator \( x \) is simply 1. Thus, we have: \[ \lim_{x \to 0^+} \frac{p_1 a_1^x \ln a_1 + p_n a_n^x \ln a_n}{p_1 a_1^x + p_n a_n^x} \] ### Step 4: Evaluate the Limit As \( x \to 0^+ \), \( a_1^x \) and \( a_n^x \) approach 1, so we can substitute: \[ \lim_{x \to 0^+} \frac{p_1 \cdot 1 \cdot \ln a_1 + p_n \cdot 1 \cdot \ln a_n}{p_1 \cdot 1 + p_n \cdot 1} = \frac{p_1 \ln a_1 + p_n \ln a_n}{p_1 + p_n} \] ### Step 5: Exponentiate the Result Finally, we exponentiate the result to find \( F(0) \): \[ F(0) = e^{\frac{p_1 \ln a_1 + p_n \ln a_n}{p_1 + p_n}} = (a_1^{p_1} a_n^{p_n})^{\frac{1}{p_1 + p_n}} = a_1^{\frac{p_1}{p_1 + p_n}} a_n^{\frac{p_n}{p_1 + p_n}} \] ### Final Answer Thus, we conclude that: \[ \lim_{x \to 0^+} F(x) = a_1^{\frac{p_1}{p_1 + p_n}} a_n^{\frac{p_n}{p_1 + p_n}} \]

To solve the limit problem given in the question, we need to analyze the function \( F(x) \) defined as: \[ F(x) = (p_1 a_1^x + p_n a_n^x)^{\frac{1}{x}} \] We are tasked with finding: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Numerical Value Type|26 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|24 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Let a_(1)+a_(2)+a_(3), . . . ,a_(n-1),a_(n) be an A.P. Statement -1: a_(1)+a_(2)+a_(3)+ . . . +a_(n)=(n)/(2)(a_(1)+a_(n)) Statement -2 a_(k)+a_(n-k+1)=a_(1)+a_(n)" for "k=1,2,3, . . . , n

Let a_(1),a_(2),a_(3), . . .,a_(n) be an A.P. Statement -1 : (1)/(a_(1)a_(n))+(1)/(a_(2)a_(n-1))+(1)/(a_(3)a_(n-1))+ . . .. +(1)/(a_(n)a_(1)) =(2)/(a_(1)+a_(n))((1)/(a_(1))+(1)/(a_(2))+ . . .. +(1)/(a_(n))) Statement -2: a_(r)+a_(n-r+1)=a_(1)+a_(n)" for "1lerlen

If a_(n) gt a_(n-1) gt …. gt a_(2) gt a_(1) gt 1 , then the value of "log"_(a_(1))"log"_(a_(2)) "log"_(a_(3))…."log"_(a_(n)) is equal to

if .^(2n+1)P_(n-1):^(2n-1)P_(n)=7:10 , then .^(n)P_(3) equals

Let P_(n)=a^(P_(n-1))-1,AA n=2,3,..., and let P_(1)=a^(x)-1, where ainR^(+). Then evaluate lim_(xto0) (P_(n))/(x).

In an arithmetic sequence a_(1),a_(2),a_(3), . . . . .,a_(n) , Delta=|{:(a_(m),a_(n),a_(p)),(m,n,p),(1,1,1):}| equals

Let p=lim_(xto0^(+))(1+tan^(2)sqrt(x))^((1)/(2x)) . Then log_(e)p is equal to

Let y = 1 + (a_(1))/(x - a_(1)) + (a_(2) x)/((x - a_(1))(x - a_(2))) + (a_(3) x^(2))/((x - a_(1))(x - a_(2))(x - a_(3))) + … (a_(n) x^(n - 1))/((x - a_(1))(x - a_(2))(x - a_(3))..(x - a_(n))) Find (dy)/(dx)

Let (1 + x)^(n) = sum_(r=0)^(n) a_(r) x^(r) . Then ( a+ (a_(1))/(a_(0))) (1 + (a_(2))/(a_(1)))…(1 + (a_(n))/(a_(n-1))) is equal to

STATEMENT-1 : If a, b, c are in A.P. , b, c, a are in G.P. then c, a, b are in H.P. STATEMENT-2 : If a_(1) , a_(2) a_(3) ……..a_(100) are in A.P. and a_(3) + a_(98) = 50 " then" a _(1) + a_(2) +a_(3) + ….+ a_(100) = 2500 STATEMENT-3 : If a_(1) , a_(2) , ....... ,a_(n) ne 0 then (a_(1) + a_(2)+ a_(3) + .......+ a_(n))/(n) ge (a_(1) a_(2) .........a_(n) )^(1//n)

CENGAGE ENGLISH-LIMITS-Linked Comprehension Type
  1. Let f(x)=(sin^(-1)(1-{x})xxcos^(-1)(1-{x}))/(sqrt(2{x})xx(1-{x})), whe...

    Text Solution

    |

  2. Let f(x)=(sin^(-1)(1-{x})xxcos^(-1)(1-{x}))/(sqrt(2{x})xx(1-{x})), whe...

    Text Solution

    |

  3. let f(x)=(cos^-1(1-{x})sin^-1(1-{x}))/sqrt(2{x}(1-{x})) where {x} deno...

    Text Solution

    |

  4. A(i)=(x-a(i))/(|x-a(i)|),i=1,2,...,n," and "a(1)lta(2)lta(3)lt...lta(n...

    Text Solution

    |

  5. A(i)=(x-a(i))/(|x-a(i)|),i=1,2,...,n," and "a(1)lta(2)lta(3)lt...lta(n...

    Text Solution

    |

  6. A(i)=(x-a(i))/(|x-a(i)|),i=1,2,...,n," and "a(1)lta(2)lta(3)lt...lta(n...

    Text Solution

    |

  7. If L=lim(xto0) (sinx+ae^(x)+be^(-x)+clog(e)(1+x))/(x^(3)) exists finit...

    Text Solution

    |

  8. If L=lim(xto0)(sinx+ae^(x)+be^(-x)+clog(e)(1+x))/(x^(3)) exists finite...

    Text Solution

    |

  9. If L=lim(xto0)(sinx+ae^(x)+be^(-x)+clog(e)(1+x))/(x^(3)) exists finite...

    Text Solution

    |

  10. Let a(1)gta(2)gta(3)gt...gta(n)gt1. p(1)gtp(2)gtp(3)gt...gtp(n)gt0" ...

    Text Solution

    |

  11. Let a(1)gta(2)gta(3)gt...gta(n)gt1. p(1)gtp(2)gtp(3)gt...gtp(n)gt0" ...

    Text Solution

    |

  12. Let a(1)gta(2)gta(3)gt...gta(n)gt1. p(1)gtp(2)gtp(3)gt...gtp(n)gt0" ...

    Text Solution

    |

  13. If L=lim(xtooo) (x+1-sqrt(ax^(2)+x+3)) exists infinetely then The v...

    Text Solution

    |

  14. If L=underset(xtooo)lim(x+1-sqrt(ax^(2)+x+3)) exists finitely then T...

    Text Solution

    |

  15. Let f : R to R be a real function. The function f is double differenti...

    Text Solution

    |

  16. Let f : R to R be a real function. The function f is double differenti...

    Text Solution

    |

  17. Let f(x) be a polynomial satisfying lim(xtooo) (x^(2)f(x))/(2x^(5)+3)=...

    Text Solution

    |

  18. Let f(x) be a polynomial satisfying underset(xtooo)lim(x^(2)f(x))/(2x^...

    Text Solution

    |

  19. If lim (xto0)(f(x))/(sin ^(2)x) = 8, lim (xto0) (g(x))/( 2 cos x-ye ^(...

    Text Solution

    |

  20. If lim(xto0)(f(x))/(sin^(2)x)=8,lim(xto0)(g(x))/(2cosx-xe^(x)+x^(3)+x-...

    Text Solution

    |