Home
Class 12
MATHS
If L=lim(xtooo) (x+1-sqrt(ax^(2)+x+3)) e...

If `L=lim_(xtooo) (x+1-sqrt(ax^(2)+x+3))` exists infinetely then
The value of a is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given, we need to find the value of \( a \) such that the limit \[ L = \lim_{x \to \infty} \left( x + 1 - \sqrt{a x^2 + x + 3} \right) \] exists. Here’s a step-by-step solution: ### Step 1: Write the limit expression We start with the limit: \[ L = \lim_{x \to \infty} \left( x + 1 - \sqrt{a x^2 + x + 3} \right) \] ### Step 2: Rationalize the expression To simplify the expression, we can multiply and divide by the conjugate: \[ L = \lim_{x \to \infty} \frac{(x + 1 - \sqrt{a x^2 + x + 3})(x + 1 + \sqrt{a x^2 + x + 3})}{x + 1 + \sqrt{a x^2 + x + 3}} \] This gives us: \[ L = \lim_{x \to \infty} \frac{(x + 1)^2 - (a x^2 + x + 3)}{x + 1 + \sqrt{a x^2 + x + 3}} \] ### Step 3: Expand the numerator Now we expand the numerator: \[ (x + 1)^2 = x^2 + 2x + 1 \] So, we have: \[ L = \lim_{x \to \infty} \frac{x^2 + 2x + 1 - (a x^2 + x + 3)}{x + 1 + \sqrt{a x^2 + x + 3}} \] This simplifies to: \[ L = \lim_{x \to \infty} \frac{(1 - a)x^2 + (2 - 1)x + (1 - 3)}{x + 1 + \sqrt{a x^2 + x + 3}} \] ### Step 4: Combine like terms Combining the terms in the numerator gives: \[ L = \lim_{x \to \infty} \frac{(1 - a)x^2 + (1)x - 2}{x + 1 + \sqrt{a x^2 + x + 3}} \] ### Step 5: Factor out \( x^2 \) from the square root In the denominator, we can factor out \( x^2 \) from the square root: \[ \sqrt{a x^2 + x + 3} = x\sqrt{a + \frac{1}{x} + \frac{3}{x^2}} \] Thus, we rewrite the limit as: \[ L = \lim_{x \to \infty} \frac{(1 - a)x^2 + (1)x - 2}{x + 1 + x\sqrt{a + \frac{1}{x} + \frac{3}{x^2}}} \] ### Step 6: Simplify the limit Now, we can simplify the limit by dividing the numerator and denominator by \( x \): \[ L = \lim_{x \to \infty} \frac{(1 - a)x + 1 - \frac{2}{x}}{1 + \frac{1}{x} + \sqrt{a + \frac{1}{x} + \frac{3}{x^2}}} \] ### Step 7: Analyze the limit as \( x \to \infty \) For the limit to exist as \( x \to \infty \), the coefficient of \( x \) in the numerator must be zero: \[ 1 - a = 0 \implies a = 1 \] ### Conclusion Thus, the value of \( a \) is: \[ \boxed{1} \]

To solve the limit problem given, we need to find the value of \( a \) such that the limit \[ L = \lim_{x \to \infty} \left( x + 1 - \sqrt{a x^2 + x + 3} \right) \] exists. Here’s a step-by-step solution: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Numerical Value Type|26 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|24 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(xtooo) (sqrt(25x^(2)-3x)+5x).

If L=lim_(xto0) (sinx+ae^(x)+be^(-x)+clog_(e)(1+x))/(x^(3)) exists finitely, then The value of L is

If lim_(xrarr0)(sin2x-a sin x)/(((x)/(3))^(3))=L exists finitely, then the absolute value of L is equal to

If L=lim_(xto0) (e^(-x^(2)//2)-cosx)/(x^(3)sinx) , then the value of 1//(3L) is ________.

If lim_(x to 1) (1 + ax + bx^(2))^((c )/(x - 1)) = e^(3) , then the value of a + b + bc + 2009 is…….

If L=lim_(x->0)(sin2x+asinx)/(x^3) is finite, then find the value of a and L

If L=lim_(xto0) (1)/(x^(3))((1)/(sqrt(1+x))-(1+ax)/(1+bx)) exists,then

If lim_(xtooo) ((x^(2)+x+1)/(x+1)-ax-b)=4, then

lim_(xtooo) (x^(2)"tan"(1)/(x))/(sqrt(8x^(2)+7x+1)) is equal to

lim_(xtooo) (x(logx)^(3))/(1+x+x^(2)) equals

CENGAGE ENGLISH-LIMITS-Linked Comprehension Type
  1. Let f(x)=(sin^(-1)(1-{x})xxcos^(-1)(1-{x}))/(sqrt(2{x})xx(1-{x})), whe...

    Text Solution

    |

  2. Let f(x)=(sin^(-1)(1-{x})xxcos^(-1)(1-{x}))/(sqrt(2{x})xx(1-{x})), whe...

    Text Solution

    |

  3. let f(x)=(cos^-1(1-{x})sin^-1(1-{x}))/sqrt(2{x}(1-{x})) where {x} deno...

    Text Solution

    |

  4. A(i)=(x-a(i))/(|x-a(i)|),i=1,2,...,n," and "a(1)lta(2)lta(3)lt...lta(n...

    Text Solution

    |

  5. A(i)=(x-a(i))/(|x-a(i)|),i=1,2,...,n," and "a(1)lta(2)lta(3)lt...lta(n...

    Text Solution

    |

  6. A(i)=(x-a(i))/(|x-a(i)|),i=1,2,...,n," and "a(1)lta(2)lta(3)lt...lta(n...

    Text Solution

    |

  7. If L=lim(xto0) (sinx+ae^(x)+be^(-x)+clog(e)(1+x))/(x^(3)) exists finit...

    Text Solution

    |

  8. If L=lim(xto0)(sinx+ae^(x)+be^(-x)+clog(e)(1+x))/(x^(3)) exists finite...

    Text Solution

    |

  9. If L=lim(xto0)(sinx+ae^(x)+be^(-x)+clog(e)(1+x))/(x^(3)) exists finite...

    Text Solution

    |

  10. Let a(1)gta(2)gta(3)gt...gta(n)gt1. p(1)gtp(2)gtp(3)gt...gtp(n)gt0" ...

    Text Solution

    |

  11. Let a(1)gta(2)gta(3)gt...gta(n)gt1. p(1)gtp(2)gtp(3)gt...gtp(n)gt0" ...

    Text Solution

    |

  12. Let a(1)gta(2)gta(3)gt...gta(n)gt1. p(1)gtp(2)gtp(3)gt...gtp(n)gt0" ...

    Text Solution

    |

  13. If L=lim(xtooo) (x+1-sqrt(ax^(2)+x+3)) exists infinetely then The v...

    Text Solution

    |

  14. If L=underset(xtooo)lim(x+1-sqrt(ax^(2)+x+3)) exists finitely then T...

    Text Solution

    |

  15. Let f : R to R be a real function. The function f is double differenti...

    Text Solution

    |

  16. Let f : R to R be a real function. The function f is double differenti...

    Text Solution

    |

  17. Let f(x) be a polynomial satisfying lim(xtooo) (x^(2)f(x))/(2x^(5)+3)=...

    Text Solution

    |

  18. Let f(x) be a polynomial satisfying underset(xtooo)lim(x^(2)f(x))/(2x^...

    Text Solution

    |

  19. If lim (xto0)(f(x))/(sin ^(2)x) = 8, lim (xto0) (g(x))/( 2 cos x-ye ^(...

    Text Solution

    |

  20. If lim(xto0)(f(x))/(sin^(2)x)=8,lim(xto0)(g(x))/(2cosx-xe^(x)+x^(3)+x-...

    Text Solution

    |