Home
Class 12
MATHS
Let f : R to R be a real function. The f...

Let `f : R to R` be a real function. The function `f` is double differentiable. If there exists `ninN` and `p in R` such that `lim_(x to oo)x^(n)f(x)=p` and there exists `lim_(x to oo)x^(n+1)f(x)` , then `lim_(x to oo)x^(n+1)f'(x)` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to analyze the given limits and apply L'Hôpital's Rule appropriately. Here's the detailed solution: ### Step-by-Step Solution: 1. **Understanding the Given Limits**: We are given that: \[ \lim_{x \to \infty} x^n f(x) = p \] This means that as \( x \) approaches infinity, the function \( x^n f(x) \) approaches the constant \( p \). 2. **Finding the Limit of \( x^{n+1} f(x) \)**: We also know that: \[ \lim_{x \to \infty} x^{n+1} f(x) \] exists. We can express this limit in terms of the previous limit: \[ \lim_{x \to \infty} x^{n+1} f(x) = \lim_{x \to \infty} x \cdot (x^n f(x)) = \lim_{x \to \infty} x \cdot p = \infty \text{ (if } p \neq 0\text{)} \] However, since the limit exists, we conclude \( p = 0 \). 3. **Applying L'Hôpital's Rule**: We can apply L'Hôpital's Rule to find \( \lim_{x \to \infty} x^{n+1} f(x) \): \[ \lim_{x \to \infty} \frac{f(x)}{1/x^{n+1}} \text{ (as } x \to \infty, 1/x^{n+1} \to 0\text{)} \] Differentiating the numerator and denominator gives: \[ \lim_{x \to \infty} \frac{f'(x)}{-\frac{(n+1)}{x^{n+2}}} \] Simplifying this, we have: \[ \lim_{x \to \infty} -x^{n+2} f'(x) = 0 \] 4. **Finding the Limit of \( x^{n+1} f'(x) \)**: Now, we need to find: \[ \lim_{x \to \infty} x^{n+1} f'(x) \] From the previous step, we know: \[ \lim_{x \to \infty} x^{n+1} f'(x) = -n \cdot p \] Since we established that \( p = 0 \), we have: \[ \lim_{x \to \infty} x^{n+1} f'(x) = -n \cdot 0 = 0 \] 5. **Final Result**: Therefore, the limit we are looking for is: \[ \lim_{x \to \infty} x^{n+1} f'(x) = 0 \] ### Final Answer: \[ \lim_{x \to \infty} x^{n+1} f'(x) = 0 \]

To solve the problem step by step, we need to analyze the given limits and apply L'Hôpital's Rule appropriately. Here's the detailed solution: ### Step-by-Step Solution: 1. **Understanding the Given Limits**: We are given that: \[ \lim_{x \to \infty} x^n f(x) = p ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Numerical Value Type|26 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|24 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

f(x)=("ln"(x^(2)+e^(x)))/("ln"(x^(4)+e^(2x))) . Then lim_(x to oo) f(x) is equal to

Let f be continuous function on [0,oo) such that lim _(x to oo) (f(x)+ int _(o)^(x) f (t ) (dt)) exists. Find lim _(x to oo) f (x).

lim_(x->oo)(1-x+x.e^(1/n))^n

if f (x) = lim _(x to oo) (prod_(i=l)^(n ) cos ((x )/(2 ^(l)))) then f '(x) is equal to:

For the function f(x) = 2 . Find lim_(x to 1) f(x)

Let f(x)=lim_( n to oo)(cosx)/(1+(tan^(-1)x)^(n)) . Then the value of int_(o)^(oo)f(x)dx is equal to

Let f :RtoR be a positive, increasing function with lim_(xtooo) (f(3x))/(f(x))=1 . Then lim_(xtooo) (f(2x))/(f(x)) is equal to

Let f(x)= lim_(n->oo)(sinx)^(2n)

Let f : R to R be a differentiable function and f(1) = 4 . Then, the value of lim_(x to 1)int_(4)^(f(x))(2t)/(x-1)dt is :

If f is an even function , then prove that Lim_( xto 0^(-)) f(x) = Lim_(x to 0^(+)) f(x) , whenever they exist .

CENGAGE ENGLISH-LIMITS-Linked Comprehension Type
  1. Let f(x)=(sin^(-1)(1-{x})xxcos^(-1)(1-{x}))/(sqrt(2{x})xx(1-{x})), whe...

    Text Solution

    |

  2. Let f(x)=(sin^(-1)(1-{x})xxcos^(-1)(1-{x}))/(sqrt(2{x})xx(1-{x})), whe...

    Text Solution

    |

  3. let f(x)=(cos^-1(1-{x})sin^-1(1-{x}))/sqrt(2{x}(1-{x})) where {x} deno...

    Text Solution

    |

  4. A(i)=(x-a(i))/(|x-a(i)|),i=1,2,...,n," and "a(1)lta(2)lta(3)lt...lta(n...

    Text Solution

    |

  5. A(i)=(x-a(i))/(|x-a(i)|),i=1,2,...,n," and "a(1)lta(2)lta(3)lt...lta(n...

    Text Solution

    |

  6. A(i)=(x-a(i))/(|x-a(i)|),i=1,2,...,n," and "a(1)lta(2)lta(3)lt...lta(n...

    Text Solution

    |

  7. If L=lim(xto0) (sinx+ae^(x)+be^(-x)+clog(e)(1+x))/(x^(3)) exists finit...

    Text Solution

    |

  8. If L=lim(xto0)(sinx+ae^(x)+be^(-x)+clog(e)(1+x))/(x^(3)) exists finite...

    Text Solution

    |

  9. If L=lim(xto0)(sinx+ae^(x)+be^(-x)+clog(e)(1+x))/(x^(3)) exists finite...

    Text Solution

    |

  10. Let a(1)gta(2)gta(3)gt...gta(n)gt1. p(1)gtp(2)gtp(3)gt...gtp(n)gt0" ...

    Text Solution

    |

  11. Let a(1)gta(2)gta(3)gt...gta(n)gt1. p(1)gtp(2)gtp(3)gt...gtp(n)gt0" ...

    Text Solution

    |

  12. Let a(1)gta(2)gta(3)gt...gta(n)gt1. p(1)gtp(2)gtp(3)gt...gtp(n)gt0" ...

    Text Solution

    |

  13. If L=lim(xtooo) (x+1-sqrt(ax^(2)+x+3)) exists infinetely then The v...

    Text Solution

    |

  14. If L=underset(xtooo)lim(x+1-sqrt(ax^(2)+x+3)) exists finitely then T...

    Text Solution

    |

  15. Let f : R to R be a real function. The function f is double differenti...

    Text Solution

    |

  16. Let f : R to R be a real function. The function f is double differenti...

    Text Solution

    |

  17. Let f(x) be a polynomial satisfying lim(xtooo) (x^(2)f(x))/(2x^(5)+3)=...

    Text Solution

    |

  18. Let f(x) be a polynomial satisfying underset(xtooo)lim(x^(2)f(x))/(2x^...

    Text Solution

    |

  19. If lim (xto0)(f(x))/(sin ^(2)x) = 8, lim (xto0) (g(x))/( 2 cos x-ye ^(...

    Text Solution

    |

  20. If lim(xto0)(f(x))/(sin^(2)x)=8,lim(xto0)(g(x))/(2cosx-xe^(x)+x^(3)+x-...

    Text Solution

    |