Home
Class 12
MATHS
If lim(xto0)(f(x))/(sin^(2)x)=8,lim(xto0...

If `lim_(xto0)(f(x))/(sin^(2)x)=8,lim_(xto0)(g(x))/(2cosx-xe^(x)+x^(3)+x-2)=lamda" and "`
`lim_(x to 0)(1+2f(x))^((1)/(g(x)))=(1)/(e)," then"`
`lim_(x to 0)(1+f(x))^((1)/(2g(x)))` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we will analyze the limits provided and derive the necessary expressions. ### Step 1: Analyze the first limit We are given: \[ \lim_{x \to 0} \frac{f(x)}{\sin^2 x} = 8 \] As \( x \to 0 \), \(\sin^2 x \to 0\). For the limit to be finite, \(f(x)\) must also approach 0. Thus, we can conclude that: \[ \lim_{x \to 0} f(x) = 0 \] Now, we can rewrite the limit: \[ \lim_{x \to 0} \frac{f(x)}{x^2} \cdot \frac{x^2}{\sin^2 x} = 8 \] Using the fact that \(\lim_{x \to 0} \frac{\sin x}{x} = 1\), we have: \[ \lim_{x \to 0} \frac{x^2}{\sin^2 x} = 1 \] Thus: \[ \lim_{x \to 0} \frac{f(x)}{x^2} = 8 \] ### Step 2: Analyze the second limit Next, we consider: \[ \lim_{x \to 0} \frac{g(x)}{2 \cos x - x e^x + x^3 + x - 2} = \lambda \] As \(x \to 0\), we can simplify the denominator: \[ 2 \cos x - 2 = 2(\cos x - 1) \approx -2 \cdot \frac{x^2}{2} = -x^2 \quad \text{(using Taylor expansion)} \] For the term \(x e^x\), we have: \[ x e^x \approx x(1 + x) = x + x^2 \] Thus: \[ 2 \cos x - x e^x + x^3 + x - 2 \approx -x^2 - (x + x^2) + x + x^3 \approx -2x^2 + x^3 \] So the limit becomes: \[ \lim_{x \to 0} \frac{g(x)}{-2x^2} = \lambda \] This implies: \[ \lim_{x \to 0} g(x) = -2\lambda \] ### Step 3: Analyze the third limit We have: \[ \lim_{x \to 0} (1 + 2f(x))^{\frac{1}{g(x)}} = \frac{1}{e} \] This is a \(1^\infty\) form, so we can rewrite it using the exponential limit: \[ \lim_{x \to 0} \frac{2f(x)}{g(x)} = -1 \] Substituting the limits we found: \[ \frac{2 \cdot 8}{-2\lambda} = -1 \implies \frac{16}{-2\lambda} = -1 \implies \lambda = 8 \] ### Step 4: Find the final limit Now we need to find: \[ \lim_{x \to 0} (1 + f(x))^{\frac{1}{2g(x)}} \] This is again a \(1^\infty\) form, so we can rewrite it: \[ \lim_{x \to 0} (1 + f(x))^{\frac{1}{2g(x)}} = e^{\lim_{x \to 0} \frac{f(x)}{2g(x)}} \] Substituting the limits: \[ \lim_{x \to 0} \frac{f(x)}{2g(x)} = \frac{8}{2 \cdot (-16)} = \frac{8}{-32} = -\frac{1}{4} \] Thus: \[ \lim_{x \to 0} (1 + f(x))^{\frac{1}{2g(x)}} = e^{-\frac{1}{4}} = \frac{1}{e^{1/4}} \] ### Final Answer \[ \lim_{x \to 0} (1 + f(x))^{\frac{1}{2g(x)}} = e^{-\frac{1}{4}} \]

To solve the given problem step by step, we will analyze the limits provided and derive the necessary expressions. ### Step 1: Analyze the first limit We are given: \[ \lim_{x \to 0} \frac{f(x)}{\sin^2 x} = 8 \] As \( x \to 0 \), \(\sin^2 x \to 0\). For the limit to be finite, \(f(x)\) must also approach 0. Thus, we can conclude that: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Numerical Value Type|26 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|24 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

If underset(xto0)lim(f(x))/(sin^(2)x)=8,underset(xto0)lim(g(x))/(2cosx-xe^(x)+x^(3)+x-2)=lamda" and " underset(xto0)lim(1+2f(x))^((1)/(g(x)))=(1)/(e)," then" The value of lamda is

lim_(xto0)(1-cos(x^(2)))/(x^(3)(4^(x)-1)) is equal to:

lim_(xto0)((e^(x)-1)/x)^(1//x)

lim_(xto0) (sin(picos^(2)x))/(x^(2)) is equal to

lim_(xto0) (sqrt(1-cos 2x))/(sqrt2x) is equal to-

lim_(xto0) (1)/(x)cos^(1)((1-x^(2))/(1+x^2)) is equal to

lim_(xto0^(-))(-In({x}+|[x]|))^({x}) is equal to

lim_(xto0) (xcot(4x))/(sin^2x cot^2(2x)) is equal to

Evaluate lim_(xto0) (x(e^(x)-1))/(1-cosx) is equal to

lim _(xto0) ((cos x -secx )/(x ^(2) (x+1)))=

CENGAGE ENGLISH-LIMITS-Linked Comprehension Type
  1. Let f(x)=(sin^(-1)(1-{x})xxcos^(-1)(1-{x}))/(sqrt(2{x})xx(1-{x})), whe...

    Text Solution

    |

  2. Let f(x)=(sin^(-1)(1-{x})xxcos^(-1)(1-{x}))/(sqrt(2{x})xx(1-{x})), whe...

    Text Solution

    |

  3. let f(x)=(cos^-1(1-{x})sin^-1(1-{x}))/sqrt(2{x}(1-{x})) where {x} deno...

    Text Solution

    |

  4. A(i)=(x-a(i))/(|x-a(i)|),i=1,2,...,n," and "a(1)lta(2)lta(3)lt...lta(n...

    Text Solution

    |

  5. A(i)=(x-a(i))/(|x-a(i)|),i=1,2,...,n," and "a(1)lta(2)lta(3)lt...lta(n...

    Text Solution

    |

  6. A(i)=(x-a(i))/(|x-a(i)|),i=1,2,...,n," and "a(1)lta(2)lta(3)lt...lta(n...

    Text Solution

    |

  7. If L=lim(xto0) (sinx+ae^(x)+be^(-x)+clog(e)(1+x))/(x^(3)) exists finit...

    Text Solution

    |

  8. If L=lim(xto0)(sinx+ae^(x)+be^(-x)+clog(e)(1+x))/(x^(3)) exists finite...

    Text Solution

    |

  9. If L=lim(xto0)(sinx+ae^(x)+be^(-x)+clog(e)(1+x))/(x^(3)) exists finite...

    Text Solution

    |

  10. Let a(1)gta(2)gta(3)gt...gta(n)gt1. p(1)gtp(2)gtp(3)gt...gtp(n)gt0" ...

    Text Solution

    |

  11. Let a(1)gta(2)gta(3)gt...gta(n)gt1. p(1)gtp(2)gtp(3)gt...gtp(n)gt0" ...

    Text Solution

    |

  12. Let a(1)gta(2)gta(3)gt...gta(n)gt1. p(1)gtp(2)gtp(3)gt...gtp(n)gt0" ...

    Text Solution

    |

  13. If L=lim(xtooo) (x+1-sqrt(ax^(2)+x+3)) exists infinetely then The v...

    Text Solution

    |

  14. If L=underset(xtooo)lim(x+1-sqrt(ax^(2)+x+3)) exists finitely then T...

    Text Solution

    |

  15. Let f : R to R be a real function. The function f is double differenti...

    Text Solution

    |

  16. Let f : R to R be a real function. The function f is double differenti...

    Text Solution

    |

  17. Let f(x) be a polynomial satisfying lim(xtooo) (x^(2)f(x))/(2x^(5)+3)=...

    Text Solution

    |

  18. Let f(x) be a polynomial satisfying underset(xtooo)lim(x^(2)f(x))/(2x^...

    Text Solution

    |

  19. If lim (xto0)(f(x))/(sin ^(2)x) = 8, lim (xto0) (g(x))/( 2 cos x-ye ^(...

    Text Solution

    |

  20. If lim(xto0)(f(x))/(sin^(2)x)=8,lim(xto0)(g(x))/(2cosx-xe^(x)+x^(3)+x-...

    Text Solution

    |