Home
Class 12
MATHS
If g(x)=int(0)^(x)cos^(4)t dt, then prov...

If `g(x)=int_(0)^(x)cos^(4)t dt`, then prove that `g(x+pi)=g(x)+g(pi)`.

Text Solution

Verified by Experts

We have `g(x)=int_(0)^(x)cos^(4)tdt`
`:.g(x+pi)=int_(0)^(x+pi)cos^(4)tdt`
`=int_(0)^(x)cos^(4)tdt+int_(x)^(x+pi)cos^(4)tdt`
`=g(x)+int_(0)^(pi)cos^(4)tdt [ :' "period of" cos^(4)t "is" pi]`
`=g(x)+g(pi)`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SOLVED EXAMPLE_TYPE|20 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

If g(x)=int_(0)^(x)cos^(4)t dt, then g(x+pi) equals to (a) (g(x))/(g(pi)) (b) g(x)+g(pi) (c) g(x)-g(pi) (d) g(x).g(pi)

If g(x)=int_0^xcos^4tdt , then g(x+pi) equals (a) g(x)+g(pi) (b) g(x)-g(pi) (c) g(x)g(pi) (d) (g(x))/(g(pi))

If f(x)=log_(e)x and g(x)=e^(x) , then prove that : f(g(x)}=g{f(x)}

If f(x) =int_(0)^(x) sin^(4)t dt , then f(x+2pi) is equal to

If f(x)=-int_(0)^(x) log (cos t) dt, then the value of f(x)-2f((pi)/(4)+(x)/(2))+2f((pi)/(4)-(x)/(2)) is equal to

If g(x)""=int0xcos4t"dt" , then g(x""+pi) equals: (1) g(x)/(g(pi) (2) g(x)+g(pi) (3) g(x)-g(pi) (4) g(x)dotg(pi)

If g(x)=int_(sinx)^("sin"(2x))sin^(-1)(t)dt ,t h e n : (a) g^(prime)(pi/2)=-2pi (b) g^(prime)(-pi/2)=-2pi (c) g^(prime)(-pi/2)=2pi (d) g^(prime)(pi/2)=2pi

Let f(x) be a continuous function AAx in R , except at x=0, such that int_0^a f(x)dx , ain R^+ exists. If g(x)=int_x^a(f(t))/t dt , prove that int_0^af(x)dx=int_0^ag(x)dx

If f (x) =int _(0)^(g(x))(dt)/(sqrt(1+t ^(3))),g (x) = int _(0)^(cos x ) (1+ sint ) ^(2) dt, then the value of f'((pi)/(2)) is equal to:

If f (x) =int _(0)^(g(x))(dt)/(sqrt(1+t ^(3))),g (x) = int _(0)^(cos x ) (1+ sint ) ^(2) dt, then the value of f'((pi)/(2)) is equal to:

CENGAGE ENGLISH-DEFINITE INTEGRATION -JEE ADVANCED
  1. If g(x)=int(0)^(x)cos^(4)t dt, then prove that g(x+pi)=g(x)+g(pi).

    Text Solution

    |

  2. Let f be a non-negative function defined on the interval [0,1]. If int...

    Text Solution

    |

  3. The value of int0^1(x^4(1-x)^4)/(1+x^2)\ dx is

    Text Solution

    |

  4. Let f be a real-valued function defined on the inverval (-1,1) such th...

    Text Solution

    |

  5. The valued of int(sqrt(In2))^(sqrt(In3)) (x sinx^(2))/(sinx^(2)+sin(In...

    Text Solution

    |

  6. Let f:[-1,2]->[0,oo) be a continuous function such that f(x)=f(1-x)for...

    Text Solution

    |

  7. Let f:[1/2,1]->R (the set of all real numbers) be a positive, non-cons...

    Text Solution

    |

  8. Let f:[0,2]vecR be a function which is continuous on [0,2] and is diff...

    Text Solution

    |

  9. int((pi)/4)^((pi)/2)(2cosecx)^17 dx

    Text Solution

    |

  10. Let f prime(x)=(192x^3)/(2+sin^4 pix) for all x in RR with f(1/2)=0. I...

    Text Solution

    |

  11. Evaluate: int(-pi//2)^(pi//2)(x^2cosx)/(1+e^x)dx

    Text Solution

    |

  12. If In=int(-pi)^(pi) \ (sinnx)/((1+pi^x) \ sinx) \ dx, n=0,1,2,...... t...

    Text Solution

    |

  13. about to only mathematics

    Text Solution

    |

  14. Let S be the area of the region enclosed by y=e^-(x^2),y=0,x=0,a n dx=...

    Text Solution

    |

  15. Find a for which lim(n->oo) (1^a+2^a+3^a+...+n^a)/((n+1)^(a-1)[(na+1)+...

    Text Solution

    |

  16. Let f:[a,b]to[1,oo) be a continuous function and let g:RtoR be defined...

    Text Solution

    |

  17. Let f:(0,oo) in R be given f(x)=overset(x)underset(1//x)int e^(t+(1)...

    Text Solution

    |

  18. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  19. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2,pi/2) . ...

    Text Solution

    |

  20. find the period of sin(x/2)-cos(x/3) is

    Text Solution

    |

  21. Let f: Rvec(0,1) be a continuous function. Then, which of the followin...

    Text Solution

    |