Home
Class 12
MATHS
Let f:R ->(0,oo) be a real valued func...

Let `f:R ->(0,oo) ` be a real valued function satisfying `int_0^x tf(x-t) dt =e^(2x)-1` then find f(x) ?

Text Solution

AI Generated Solution

To solve the problem, we need to find the function \( f(x) \) given the equation: \[ \int_0^x t f(x - t) \, dt = e^{2x} - 1 \] ### Step 1: Rewrite the Integral ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise SOLVED EXAMPLE_TYPE|20 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

A function satisfying int_0^1f(tx)dt=nf(x) , where x>0 is

Let f:(0,oo)vec(0,oo) be a differentiable function satisfying, xint_0^x(1-t)f(t)dt=int_0^x tf(t)dtx in R^+a n df(1)=1. Determine f(x)dot

Let f:(0,oo)vec(0,oo) be a differentiable function satisfying, xint_0^x(1-t)f(t)dt=int_0^x tf(t)dtx in R^+a n df(1)=1. Determine f(x)dot

Let f(x) be a derivable function satisfying f(x)=int_0^x e^t sin(x-t) dt and g(x)=f '' (x)-f(x) Then the possible integers in the range of g(x) is_______

Let f(x) be a differentiable function satisfying f(x)=int_(0)^(x)e^((2tx-t^(2)))cos(x-t)dt , then find the value of f''(0) .

Let f(x) be a differentiable function such that f(x)=x^2 +int_0^x e^-t f(x-t) dt then int_0^1 f(x) dx=

Let f:RtoR be a differntiable function satisfying f(x)=x^(2)+3int_(0)^(x)e^(-t^(3)).f(x-t^(3))dt . Then find f(x) .

Let f be a continuous function satisfying the equation int_(0)^(x)f(t)dt+int_(0)^(x)tf(x-t)dt=e^(-x)-1 , then find the value of e^(9)f(9) is equal to…………………..

If f(x)=int_0^x tf(t)dt+2, then

Let f be a differentiable function satisfying int_(0)^(f(x))f^(-1)(t)dt-int_(0)^(x)(cost-f(t)dt=0 and f((pi)/2)=2/(pi) The value of lim_(x to 0)(cosx)/(f(x)) is equal to where [.] denotes greatest integer function