Home
Class 12
MATHS
y=f(x) satisfies the relation int(2)^(x)...

`y=f(x)` satisfies the relation `int_(2)^(x)f(t)dt=(x^(2))/2+int_(x)^(2)t^(2)f(t)dt`
The value of `int_(-2)^(2)f(x)dx` is

A

`0`

B

`-2`

C

`2log_(e)2`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given relation: \[ \int_{2}^{x} f(t) \, dt = \frac{x^2}{2} + \int_{x}^{2} t^2 f(t) \, dt \] ### Step 1: Differentiate both sides with respect to \(x\) Using the Leibniz rule for differentiation under the integral sign, we differentiate the left-hand side and the right-hand side: \[ \frac{d}{dx} \left( \int_{2}^{x} f(t) \, dt \right) = f(x) \] For the right-hand side, we differentiate: \[ \frac{d}{dx} \left( \frac{x^2}{2} + \int_{x}^{2} t^2 f(t) \, dt \right) = x - x^2 f(x) \] ### Step 2: Set the derivatives equal to each other Equating the derivatives from both sides gives us: \[ f(x) = x - x^2 f(x) \] ### Step 3: Rearranging the equation Now, we can rearrange this equation to isolate \(f(x)\): \[ f(x) + x^2 f(x) = x \] Factoring out \(f(x)\): \[ f(x)(1 + x^2) = x \] ### Step 4: Solve for \(f(x)\) Now, we can solve for \(f(x)\): \[ f(x) = \frac{x}{1 + x^2} \] ### Step 5: Evaluate the integral \(\int_{-2}^{2} f(x) \, dx\) Now we need to evaluate: \[ \int_{-2}^{2} f(x) \, dx = \int_{-2}^{2} \frac{x}{1 + x^2} \, dx \] ### Step 6: Check if \(f(x)\) is an odd function To determine if the integral from \(-2\) to \(2\) is zero, we check if \(f(x)\) is an odd function: \[ f(-x) = \frac{-x}{1 + (-x)^2} = \frac{-x}{1 + x^2} = -f(x) \] Since \(f(-x) = -f(x)\), \(f(x)\) is indeed an odd function. ### Step 7: Conclusion The integral of an odd function over a symmetric interval around zero is zero: \[ \int_{-2}^{2} f(x) \, dx = 0 \] Thus, the value of \(\int_{-2}^{2} f(x) \, dx\) is: \[ \boxed{0} \]

To solve the problem step by step, we start with the given relation: \[ \int_{2}^{x} f(t) \, dt = \frac{x^2}{2} + \int_{x}^{2} t^2 f(t) \, dt \] ### Step 1: Differentiate both sides with respect to \(x\) ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MATRIX MATCH_TYPE|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise NUMERICAL VALUE_TYPE|28 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

y=f(x) satisfies the relation int_(2)^(x)f(t)dt=(x^(2))/2+int_(x)^(2)t^(2)f(t)dt The range of y=f(x) is

y=f(x) satisfies the relation int_(2)^(x)f(t)dt=(x^(2))/2+int_(x)^(2)t^(2)f(t)dt The value of x for which f(x) is increasing is

If int_(0)^(x)f(t)dt=e^(x)-ae^(2x)int_(0)^(1)f(t)e^(-t)dt , then

Let y = f(x) be a differentiable curve satisfying int_(2)^(x)f(t)dt=(x^(2))/(2)+int_(x)^(2)t^(2)f(t)dt , then int_(-pi//4)^(pi//4)(f(x)+x^(9)-x^(3)+x+1)/(cos^(2)x)dx equals :

If int_(0)^(x)f(t)dt = x^(2)-int_(0)^(x^(2))(f(t))/(t)dt then find f(1) .

f(x)=sinx+int_(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The value of int_(0)^(pi//2) f(x)dx is

Let f(x)=int_(2)^(x)f(t^(2)-3t+4)dt . Then

If int_(0) ^(x) f (t) dt = x + int _(x ) ^(1) t f (t) dt, then the value of f (1) , is

lim_(x to 0)(int_(-x)^(x) f(t)dt)/(int_(0)^(2x) f(t+4)dt) is equal to

If int_(0)^(x) f(t)dt=x^(2)+2x-int_(0)^(x) tf(t)dt, x in (0,oo) . Then, f(x) is

CENGAGE ENGLISH-DEFINITE INTEGRATION -LC_TYPE
  1. y=f(x) satisfies the relation int(2)^(x)f(t)dt=(x^(2))/2+int(x)^(2)t^(...

    Text Solution

    |

  2. y=f(x) satisfies the relation int(2)^(x)f(t)dt=(x^(2))/2+int(x)^(2)t^(...

    Text Solution

    |

  3. y=f(x) satisfies the relation int(2)^(x)f(t)dt=(x^(2))/2+int(x)^(2)t^(...

    Text Solution

    |

  4. Let f:R to R be a differentiable function such that f(x)=x^(2)+int(0)^...

    Text Solution

    |

  5. Let f:RtoR be a differentiable function such that f(x)=x^(2)+int(0)^(x...

    Text Solution

    |

  6. Let f(x) be a differentiable function such that f(x)=x^2 +int0^x e^-t ...

    Text Solution

    |

  7. f(x) satisfies the relation f(x)-lambdaint0^(pi//2)sinx*costf(t)dt=si...

    Text Solution

    |

  8. f(x) satisfies the relation f(x)-lamda int(0)^(pi//2)sinxcostf(t)dt=si...

    Text Solution

    |

  9. f(x) satisfies the relation f(x)-lambdaint0^(pi//2)sinx*costf(t)dt=si...

    Text Solution

    |

  10. Let f(x) and phi(x) are two continuous function on R satisfying phi(x)...

    Text Solution

    |

  11. Let f(x) and phi(x) are two continuous function on R satisfying phi(x)...

    Text Solution

    |

  12. Let f(x) and phi(x) are two continuous function on R satisfying phi(x)...

    Text Solution

    |

  13. Find the area of a parallelogram whose adjacent sides are given by th...

    Text Solution

    |

  14. Evaluating integrals dependent on a parameter: Differentiate I with ...

    Text Solution

    |

  15. Evaluating integrals dependent on a parameter: Differentiate I with ...

    Text Solution

    |

  16. The value of (dI)/(da) when I=int(0)^(pi//2) log((1+asinx)/(1-asinx)) ...

    Text Solution

    |

  17. Evaluating integrals dependent on a parameter: Differentiate I with ...

    Text Solution

    |

  18. f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The range of f(x) is

    Text Solution

    |

  19. f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt f(x) is not invertibl...

    Text Solution

    |

  20. f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The value of int(0)^(...

    Text Solution

    |