Home
Class 12
MATHS
y=f(x) satisfies the relation int(2)^(x)...

`y=f(x)` satisfies the relation `int_(2)^(x)f(t)dt=(x^(2))/2+int_(x)^(2)t^(2)f(t)dt`
The value of `x` for which `f(x)` is increasing is

A

`(-oo,1]`

B

`[-1,oo)`

C

`[-1,1]`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( x \) for which the function \( f(x) \) is increasing, given the relation: \[ \int_{2}^{x} f(t) dt = \frac{x^2}{2} + \int_{x}^{2} t^2 f(t) dt \] ### Step 1: Differentiate both sides with respect to \( x \) We start by differentiating both sides of the equation with respect to \( x \). Using the Fundamental Theorem of Calculus, we have: \[ \frac{d}{dx} \left( \int_{2}^{x} f(t) dt \right) = f(x) \] For the right-hand side, we differentiate: \[ \frac{d}{dx} \left( \frac{x^2}{2} + \int_{x}^{2} t^2 f(t) dt \right) = x + \frac{d}{dx} \left( \int_{x}^{2} t^2 f(t) dt \right) \] Using the Leibniz rule for differentiation under the integral sign, we get: \[ \frac{d}{dx} \left( \int_{x}^{2} t^2 f(t) dt \right) = -x^2 f(x) \] Thus, the right-hand side becomes: \[ x - x^2 f(x) \] Equating both sides gives us: \[ f(x) = x - x^2 f(x) \] ### Step 2: Solve for \( f(x) \) Rearranging the equation, we have: \[ f(x) + x^2 f(x) = x \] Factoring out \( f(x) \): \[ f(x)(1 + x^2) = x \] Thus, we can solve for \( f(x) \): \[ f(x) = \frac{x}{1 + x^2} \] ### Step 3: Find the derivative \( f'(x) \) To determine where \( f(x) \) is increasing, we need to find the derivative \( f'(x) \): Using the quotient rule: \[ f'(x) = \frac{(1 + x^2)(1) - x(2x)}{(1 + x^2)^2} \] This simplifies to: \[ f'(x) = \frac{1 + x^2 - 2x^2}{(1 + x^2)^2} = \frac{1 - x^2}{(1 + x^2)^2} \] ### Step 4: Determine where \( f'(x) > 0 \) For \( f(x) \) to be increasing, we need: \[ f'(x) > 0 \implies \frac{1 - x^2}{(1 + x^2)^2} > 0 \] Since \( (1 + x^2)^2 > 0 \) for all \( x \), we only need to consider: \[ 1 - x^2 > 0 \implies x^2 < 1 \] This gives us: \[ -1 < x < 1 \] ### Step 5: Conclusion Thus, the values of \( x \) for which \( f(x) \) is increasing are in the interval: \[ (-1, 1) \]

To solve the problem, we need to find the values of \( x \) for which the function \( f(x) \) is increasing, given the relation: \[ \int_{2}^{x} f(t) dt = \frac{x^2}{2} + \int_{x}^{2} t^2 f(t) dt \] ### Step 1: Differentiate both sides with respect to \( x \) ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MATRIX MATCH_TYPE|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise NUMERICAL VALUE_TYPE|28 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

y=f(x) satisfies the relation int_(2)^(x)f(t)dt=(x^(2))/2+int_(x)^(2)t^(2)f(t)dt The range of y=f(x) is

y=f(x) satisfies the relation int_(2)^(x)f(t)dt=(x^(2))/2+int_(x)^(2)t^(2)f(t)dt The value of int_(-2)^(2)f(x)dx is

If int_(0)^(x)f(t)dt=e^(x)-ae^(2x)int_(0)^(1)f(t)e^(-t)dt , then

If int_(0)^(x)f(t)dt = x^(2)-int_(0)^(x^(2))(f(t))/(t)dt then find f(1) .

Let f(x)=int_(2)^(x)f(t^(2)-3t+4)dt . Then

If int_(0) ^(x) f (t) dt = x + int _(x ) ^(1) t f (t) dt, then the value of f (1) , is

lim_(x to 0)(int_(-x)^(x) f(t)dt)/(int_(0)^(2x) f(t+4)dt) is equal to

If int_(0)^(x^(2)(1+x))f(t)dt=x , then the value of f(2) is.

If int_(0)^(x) f(t)dt=x^(2)+2x-int_(0)^(x) tf(t)dt, x in (0,oo) . Then, f(x) is

If f(x)=x^(2)int_(0)^(1)f(t)dt+2 , then

CENGAGE ENGLISH-DEFINITE INTEGRATION -LC_TYPE
  1. y=f(x) satisfies the relation int(2)^(x)f(t)dt=(x^(2))/2+int(x)^(2)t^(...

    Text Solution

    |

  2. y=f(x) satisfies the relation int(2)^(x)f(t)dt=(x^(2))/2+int(x)^(2)t^(...

    Text Solution

    |

  3. y=f(x) satisfies the relation int(2)^(x)f(t)dt=(x^(2))/2+int(x)^(2)t^(...

    Text Solution

    |

  4. Let f:R to R be a differentiable function such that f(x)=x^(2)+int(0)^...

    Text Solution

    |

  5. Let f:RtoR be a differentiable function such that f(x)=x^(2)+int(0)^(x...

    Text Solution

    |

  6. Let f(x) be a differentiable function such that f(x)=x^2 +int0^x e^-t ...

    Text Solution

    |

  7. f(x) satisfies the relation f(x)-lambdaint0^(pi//2)sinx*costf(t)dt=si...

    Text Solution

    |

  8. f(x) satisfies the relation f(x)-lamda int(0)^(pi//2)sinxcostf(t)dt=si...

    Text Solution

    |

  9. f(x) satisfies the relation f(x)-lambdaint0^(pi//2)sinx*costf(t)dt=si...

    Text Solution

    |

  10. Let f(x) and phi(x) are two continuous function on R satisfying phi(x)...

    Text Solution

    |

  11. Let f(x) and phi(x) are two continuous function on R satisfying phi(x)...

    Text Solution

    |

  12. Let f(x) and phi(x) are two continuous function on R satisfying phi(x)...

    Text Solution

    |

  13. Find the area of a parallelogram whose adjacent sides are given by th...

    Text Solution

    |

  14. Evaluating integrals dependent on a parameter: Differentiate I with ...

    Text Solution

    |

  15. Evaluating integrals dependent on a parameter: Differentiate I with ...

    Text Solution

    |

  16. The value of (dI)/(da) when I=int(0)^(pi//2) log((1+asinx)/(1-asinx)) ...

    Text Solution

    |

  17. Evaluating integrals dependent on a parameter: Differentiate I with ...

    Text Solution

    |

  18. f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The range of f(x) is

    Text Solution

    |

  19. f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt f(x) is not invertibl...

    Text Solution

    |

  20. f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The value of int(0)^(...

    Text Solution

    |