Home
Class 12
MATHS
Let f:R to R be a differentiable functio...

Let `f:R to R` be a differentiable function such that `f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt`. `f(x)` increases for

A

`xgt1`

B

`xlt-2`

C

`xgt2`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given function \( f(x) \) and determine the intervals where it is increasing. The function is defined as: \[ f(x) = x^2 + \int_0^x e^{-t} f(x - t) \, dt \] ### Step 1: Differentiate \( f(x) \) We will differentiate both sides of the equation with respect to \( x \): \[ f'(x) = \frac{d}{dx} \left( x^2 \right) + \frac{d}{dx} \left( \int_0^x e^{-t} f(x - t) \, dt \right) \] The derivative of \( x^2 \) is \( 2x \). For the integral, we apply Leibniz's rule: \[ \frac{d}{dx} \left( \int_0^x e^{-t} f(x - t) \, dt \right) = e^{-x} f(0) + \int_0^x e^{-t} \frac{d}{dx} f(x - t) \, dt \] Using the chain rule, we have: \[ \frac{d}{dx} f(x - t) = f'(x - t) \] Thus, we can rewrite the derivative as: \[ f'(x) = 2x + e^{-x} f(0) + \int_0^x e^{-t} f'(x - t) \, dt \] ### Step 2: Substitute \( f(0) \) To evaluate \( f(0) \), we substitute \( x = 0 \) into the original function: \[ f(0) = 0^2 + \int_0^0 e^{-t} f(0 - t) \, dt = 0 \] So, \( f(0) = 0 \). ### Step 3: Simplify \( f'(x) \) Now substituting \( f(0) = 0 \) into the derivative: \[ f'(x) = 2x + \int_0^x e^{-t} f'(x - t) \, dt \] ### Step 4: Analyze the expression for \( f'(x) \) We want to find when \( f'(x) > 0 \): \[ f'(x) = 2x + \int_0^x e^{-t} f'(x - t) \, dt > 0 \] ### Step 5: Find critical points The term \( 2x \) is positive when \( x > 0 \) and negative when \( x < 0 \). The integral term is always non-negative since \( e^{-t} > 0 \) for all \( t \). ### Step 6: Determine intervals for \( f'(x) \) 1. For \( x < 0 \): - \( 2x < 0 \) - The integral term is non-negative, but it cannot outweigh \( 2x \). Thus, \( f'(x) < 0 \). 2. For \( x = 0 \): - \( f'(0) = 0 \). 3. For \( x > 0 \): - \( 2x > 0 \). - The integral term is also non-negative, making \( f'(x) > 0 \). ### Conclusion Thus, \( f(x) \) is increasing for \( x \in (0, \infty) \). ### Final Answer The function \( f(x) \) increases for \( x \in (0, \infty) \).
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MATRIX MATCH_TYPE|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise NUMERICAL VALUE_TYPE|28 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Let f:RtoR be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . y=f(x) is

Let f(x) be a differentiable function such that f(x)=x^2 +int_0^x e^-t f(x-t) dt then int_0^1 f(x) dx=

Let f:RtoR be a differntiable function satisfying f(x)=x^(2)+3int_(0)^(x)e^(-t^(3)).f(x-t^(3))dt . Then find f(x) .

Let f(x) be a differentiable function satisfying f(x)=int_(0)^(x)e^((2tx-t^(2)))cos(x-t)dt , then find the value of f''(0) .

If f(x)=int_(x^2)^(x^2+1)e^(-t^2)dt , then f(x) increases in

If f:RrarrR,f(x) is a differentiable function such that (f(x))^(2)=e^(2)+int_(0)^(x)(f(t)^(2)+(f'(t))^(2))dtAAx inR . The values f(1) can take is/are

Let f:R to R be a differentiable function such that f(2)=2 . Then, the value of lim_(xrarr2) int_(2)^(f(x))(4t^3)/(x-2) dt , is

Let f(x) and g(x) be differentiable functions such that f(x)+ int_(0)^(x) g(t)dt= sin x(cos x- sin x) and (f'(x))^(2)+(g(x))^(2) = 1,"then" f(x) and g (x) respectively , can be

Let f : R to R be a continuously differentiable function such that f(2) = 6 and f'(2) = 1/48 . If int_(6)^(f(x)) 4t^(3) dt = (x-2) g(x) than lim_( x to 2) g(x) is equal to

Let f:(0,oo)->R be a differentiable function such that f'(x)=2-f(x)/x for all x in (0,oo) and f(1)=1 , then

CENGAGE ENGLISH-DEFINITE INTEGRATION -LC_TYPE
  1. y=f(x) satisfies the relation int(2)^(x)f(t)dt=(x^(2))/2+int(x)^(2)t^(...

    Text Solution

    |

  2. y=f(x) satisfies the relation int(2)^(x)f(t)dt=(x^(2))/2+int(x)^(2)t^(...

    Text Solution

    |

  3. Let f:R to R be a differentiable function such that f(x)=x^(2)+int(0)^...

    Text Solution

    |

  4. Let f:RtoR be a differentiable function such that f(x)=x^(2)+int(0)^(x...

    Text Solution

    |

  5. Let f(x) be a differentiable function such that f(x)=x^2 +int0^x e^-t ...

    Text Solution

    |

  6. f(x) satisfies the relation f(x)-lambdaint0^(pi//2)sinx*costf(t)dt=si...

    Text Solution

    |

  7. f(x) satisfies the relation f(x)-lamda int(0)^(pi//2)sinxcostf(t)dt=si...

    Text Solution

    |

  8. f(x) satisfies the relation f(x)-lambdaint0^(pi//2)sinx*costf(t)dt=si...

    Text Solution

    |

  9. Let f(x) and phi(x) are two continuous function on R satisfying phi(x)...

    Text Solution

    |

  10. Let f(x) and phi(x) are two continuous function on R satisfying phi(x)...

    Text Solution

    |

  11. Let f(x) and phi(x) are two continuous function on R satisfying phi(x)...

    Text Solution

    |

  12. Find the area of a parallelogram whose adjacent sides are given by th...

    Text Solution

    |

  13. Evaluating integrals dependent on a parameter: Differentiate I with ...

    Text Solution

    |

  14. Evaluating integrals dependent on a parameter: Differentiate I with ...

    Text Solution

    |

  15. The value of (dI)/(da) when I=int(0)^(pi//2) log((1+asinx)/(1-asinx)) ...

    Text Solution

    |

  16. Evaluating integrals dependent on a parameter: Differentiate I with ...

    Text Solution

    |

  17. f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The range of f(x) is

    Text Solution

    |

  18. f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt f(x) is not invertibl...

    Text Solution

    |

  19. f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The value of int(0)^(...

    Text Solution

    |

  20. Let u=int0^oo (dx)/(x^4+7x^2+1 and v=int0^oo (x^2dx)/(x^4+7x^2+1) then

    Text Solution

    |