Home
Class 12
MATHS
f(x) satisfies the relation f(x)-lambda...

`f(x)` satisfies the relation `f(x)-lambdaint_0^(pi//2)sinx*costf(t)dt=sinx` If `lambda > 2` then `f(x)` decreases in

A

`(0,pi)`

B

`(pi/2,3pi//2)`

C

`(-pi//2,pi//2)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given relation for the function \( f(x) \): \[ f(x) - \lambda \int_0^{\frac{\pi}{2}} \sin x \cos t f(t) dt = \sin x \] ### Step 1: Rearranging the Equation We can rearrange the equation to express \( f(x) \): \[ f(x) = \sin x + \lambda \int_0^{\frac{\pi}{2}} \sin x \cos t f(t) dt \] ### Step 2: Define the Integral Let us define the integral: \[ A = \int_0^{\frac{\pi}{2}} \cos t f(t) dt \] Then we can rewrite \( f(x) \): \[ f(x) = \sin x (1 + \lambda A) \] ### Step 3: Substitute for \( A \) Now, if we substitute \( f(t) \) back into the integral \( A \): \[ A = \int_0^{\frac{\pi}{2}} \cos t \left( \sin t (1 + \lambda A) \right) dt \] This simplifies to: \[ A = (1 + \lambda A) \int_0^{\frac{\pi}{2}} \sin t \cos t dt \] ### Step 4: Evaluate the Integral The integral \( \int_0^{\frac{\pi}{2}} \sin t \cos t dt \) can be evaluated as: \[ \int_0^{\frac{\pi}{2}} \sin t \cos t dt = \frac{1}{2} \int_0^{\frac{\pi}{2}} \sin(2t) dt = \frac{1}{2} \left[-\frac{1}{2} \cos(2t)\right]_0^{\frac{\pi}{2}} = \frac{1}{2} \] Thus, we have: \[ A = (1 + \lambda A) \cdot \frac{1}{2} \] ### Step 5: Solve for \( A \) Rearranging gives: \[ 2A = 1 + \lambda A \] \[ 2A - \lambda A = 1 \] \[ A(2 - \lambda) = 1 \] \[ A = \frac{1}{2 - \lambda} \] ### Step 6: Substitute Back to Find \( f(x) \) Now substituting \( A \) back into the expression for \( f(x) \): \[ f(x) = \sin x \left(1 + \lambda \cdot \frac{1}{2 - \lambda}\right) \] This simplifies to: \[ f(x) = \sin x \left(\frac{2 - \lambda + \lambda}{2 - \lambda}\right) = \sin x \left(\frac{2}{2 - \lambda}\right) \] ### Step 7: Determine the Decreasing Condition To determine when \( f(x) \) is decreasing, we differentiate \( f(x) \): \[ f'(x) = \frac{2}{2 - \lambda} \cos x \] For \( f(x) \) to be decreasing, we need: \[ f'(x) < 0 \] This implies: \[ \frac{2}{2 - \lambda} \cos x < 0 \] Since \( \frac{2}{2 - \lambda} > 0 \) when \( \lambda < 2 \), we need \( \cos x < 0 \). This occurs in the intervals: \[ \left(\frac{\pi}{2}, \frac{3\pi}{2}\right) \] ### Conclusion Thus, for \( \lambda > 2 \), the function \( f(x) \) is decreasing in the interval: \[ \left(\frac{\pi}{2}, \frac{3\pi}{2}\right) \]

To solve the problem, we start with the given relation for the function \( f(x) \): \[ f(x) - \lambda \int_0^{\frac{\pi}{2}} \sin x \cos t f(t) dt = \sin x \] ### Step 1: Rearranging the Equation We can rearrange the equation to express \( f(x) \): ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MATRIX MATCH_TYPE|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise NUMERICAL VALUE_TYPE|28 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

f(x) satisfies the relation f(x)-lamda int_(0)^(pi//2)sinxcostf(t)dt=sinx If f(x)=2 has the least one real root, then

Find f (x) if f(x)=lambdaint_(0)^(pi//2)sinxcostf(t)dt+sinx where lambda is constant ne 2 .

y=f(x) satisfies the relation int_(2)^(x)f(t)dt=(x^(2))/2+int_(x)^(2)t^(2)f(t)dt The value of x for which f(x) is increasing is

A continuous function f(x) satisfies the relation f(x)=e^x+int_0^1 e^xf(t)dt then f(1)=

f(x)=int_0^x(e^t-1)(t-1)(sint-cost)sin t dt ,AAx in (-pi/2, 2pi), then f(x) is decreasing in :

y=f(x) satisfies the relation int_(2)^(x)f(t)dt=(x^(2))/2+int_(x)^(2)t^(2)f(t)dt The range of y=f(x) is

Let y=f(x) satisfies the equation f(x) = (e^(-x)+e^(x))cosx-2x-int_(0)^(x)(x-t)f^(')(t)dt y satisfies the differential equation

f(x)=sinx+int_(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The range of f(x) is

f(x)=sinx+int_(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt f(x) is not invertible for

y=f(x) satisfies the relation int_(2)^(x)f(t)dt=(x^(2))/2+int_(x)^(2)t^(2)f(t)dt The value of int_(-2)^(2)f(x)dx is

CENGAGE ENGLISH-DEFINITE INTEGRATION -LC_TYPE
  1. Let f:RtoR be a differentiable function such that f(x)=x^(2)+int(0)^(x...

    Text Solution

    |

  2. Let f(x) be a differentiable function such that f(x)=x^2 +int0^x e^-t ...

    Text Solution

    |

  3. f(x) satisfies the relation f(x)-lambdaint0^(pi//2)sinx*costf(t)dt=si...

    Text Solution

    |

  4. f(x) satisfies the relation f(x)-lamda int(0)^(pi//2)sinxcostf(t)dt=si...

    Text Solution

    |

  5. f(x) satisfies the relation f(x)-lambdaint0^(pi//2)sinx*costf(t)dt=si...

    Text Solution

    |

  6. Let f(x) and phi(x) are two continuous function on R satisfying phi(x)...

    Text Solution

    |

  7. Let f(x) and phi(x) are two continuous function on R satisfying phi(x)...

    Text Solution

    |

  8. Let f(x) and phi(x) are two continuous function on R satisfying phi(x)...

    Text Solution

    |

  9. Find the area of a parallelogram whose adjacent sides are given by th...

    Text Solution

    |

  10. Evaluating integrals dependent on a parameter: Differentiate I with ...

    Text Solution

    |

  11. Evaluating integrals dependent on a parameter: Differentiate I with ...

    Text Solution

    |

  12. The value of (dI)/(da) when I=int(0)^(pi//2) log((1+asinx)/(1-asinx)) ...

    Text Solution

    |

  13. Evaluating integrals dependent on a parameter: Differentiate I with ...

    Text Solution

    |

  14. f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The range of f(x) is

    Text Solution

    |

  15. f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt f(x) is not invertibl...

    Text Solution

    |

  16. f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The value of int(0)^(...

    Text Solution

    |

  17. Let u=int0^oo (dx)/(x^4+7x^2+1 and v=int0^oo (x^2dx)/(x^4+7x^2+1) then

    Text Solution

    |

  18. Let u=int0^oo (dx)/(x^4+7x^2+1 and v=int0^x (x^2dx)/(x^4+7x^2+1) then

    Text Solution

    |

  19. If f(x)=int(0)^(1)(dt)/(1+|x-t|),x in R. The value of f'(1//2) is equa...

    Text Solution

    |

  20. If f(x)=int(0)^(1)(dt)/(1+|x-t|),x in R. The value of f'(1//2) is equa...

    Text Solution

    |