Home
Class 12
MATHS
f(x) satisfies the relation f(x)-lamda i...

`f(x)` satisfies the relation `f(x)-lamda int_(0)^(pi//2)sinxcostf(t)dt=sinx`
If `f(x)=2` has the least one real root, then

A

`lamda epsilon[1,4]`

B

`lamda epsilon[-1,2]`

C

`lamda epsilon[0,1]`

D

`lamda epsilon [1,3]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the given equation and derive the conditions for the function \( f(x) \). ### Step 1: Write down the given relation We start with the relation given in the problem: \[ f(x) - \lambda \int_{0}^{\frac{\pi}{2}} \sin x \cos t f(t) dt = \sin x \] Rearranging this, we get: \[ f(x) = \sin x + \lambda \int_{0}^{\frac{\pi}{2}} \sin x \cos t f(t) dt \] ### Step 2: Define \( a \) Let: \[ a = \lambda \int_{0}^{\frac{\pi}{2}} \cos t f(t) dt \] Then we can rewrite \( f(x) \) as: \[ f(x) = a + \sin x \] ### Step 3: Substitute \( f(t) \) Now, substituting \( f(t) = a + \sin t \) into the integral: \[ a = \lambda \int_{0}^{\frac{\pi}{2}} \cos t (a + \sin t) dt \] This expands to: \[ a = \lambda \left( a \int_{0}^{\frac{\pi}{2}} \cos t dt + \int_{0}^{\frac{\pi}{2}} \cos t \sin t dt \right) \] ### Step 4: Calculate the integrals Calculating the integrals: 1. \(\int_{0}^{\frac{\pi}{2}} \cos t dt = 1\) 2. \(\int_{0}^{\frac{\pi}{2}} \cos t \sin t dt = \frac{1}{2}\) Substituting these values, we have: \[ a = \lambda \left( a \cdot 1 + \frac{1}{2} \right) \] This simplifies to: \[ a = \lambda a + \frac{\lambda}{2} \] ### Step 5: Rearranging the equation Rearranging gives: \[ a - \lambda a = \frac{\lambda}{2} \] Factoring out \( a \): \[ a(1 - \lambda) = \frac{\lambda}{2} \] Thus, \[ a = \frac{\lambda}{2(1 - \lambda)} \quad \text{(if \( \lambda \neq 1 \))} \] ### Step 6: Substitute \( a \) back into \( f(x) \) Now substituting \( a \) back into the expression for \( f(x) \): \[ f(x) = \frac{\lambda}{2(1 - \lambda)} + \sin x \] ### Step 7: Finding the condition for \( f(x) = 2 \) We need to find the condition under which \( f(x) = 2 \) has at least one real root: \[ \frac{\lambda}{2(1 - \lambda)} + \sin x = 2 \] Rearranging gives: \[ \sin x = 2 - \frac{\lambda}{2(1 - \lambda)} \] ### Step 8: Determine the range of \( \sin x \) Since \( \sin x \) must be between -1 and 1, we set up the inequalities: \[ -1 \leq 2 - \frac{\lambda}{2(1 - \lambda)} \leq 1 \] ### Step 9: Solve the inequalities 1. From \( 2 - \frac{\lambda}{2(1 - \lambda)} \geq -1 \): \[ \frac{\lambda}{2(1 - \lambda)} \leq 3 \implies \lambda \leq 6(1 - \lambda) \implies 7\lambda \leq 6 \implies \lambda \leq \frac{6}{7} \] 2. From \( 2 - \frac{\lambda}{2(1 - \lambda)} \leq 1 \): \[ \frac{\lambda}{2(1 - \lambda)} \geq 1 \implies \lambda \geq 2(1 - \lambda) \implies 3\lambda \geq 2 \implies \lambda \geq \frac{2}{3} \] ### Step 10: Combine the results Combining the results gives: \[ \frac{2}{3} \leq \lambda \leq \frac{6}{7} \] ### Final Result Thus, the values of \( \lambda \) for which \( f(x) = 2 \) has at least one real root are: \[ \lambda \in \left[\frac{2}{3}, \frac{6}{7}\right] \]

To solve the problem step by step, we will analyze the given equation and derive the conditions for the function \( f(x) \). ### Step 1: Write down the given relation We start with the relation given in the problem: \[ f(x) - \lambda \int_{0}^{\frac{\pi}{2}} \sin x \cos t f(t) dt = \sin x \] Rearranging this, we get: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MATRIX MATCH_TYPE|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise NUMERICAL VALUE_TYPE|28 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

f(x) satisfies the relation f(x)-lambdaint_0^(pi//2)sinx*costf(t)dt=sinx If lambda > 2 then f(x) decreases in

f(x) satisfies the relation f(x)-lambdaint_0^(pi//2)sinx*costf(t)dt=sinx If lambda > 2 then f(x) decreases in

Find f (x) if f(x)=lambdaint_(0)^(pi//2)sinxcostf(t)dt+sinx where lambda is constant ne 2 .

A Function f(x) satisfies the relation f(x)=e^x+int_0^1e^xf(t)dtdot Then (a) f(0) 0

f(x)=sinx+int_(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The range of f(x) is

f(x)=sinx+int_(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt f(x) is not invertible for

y=f(x) satisfies the relation int_(2)^(x)f(t)dt=(x^(2))/2+int_(x)^(2)t^(2)f(t)dt The range of y=f(x) is

A continuous function f(x) satisfies the relation f(x)=e^x+int_0^1 e^xf(t)dt then f(1)=

y=f(x) satisfies the relation int_(2)^(x)f(t)dt=(x^(2))/2+int_(x)^(2)t^(2)f(t)dt The value of x for which f(x) is increasing is

Let y=f(x) satisfies the equation f(x) = (e^(-x)+e^(x))cosx-2x-int_(0)^(x)(x-t)f^(')(t)dt y satisfies the differential equation

CENGAGE ENGLISH-DEFINITE INTEGRATION -LC_TYPE
  1. Let f(x) be a differentiable function such that f(x)=x^2 +int0^x e^-t ...

    Text Solution

    |

  2. f(x) satisfies the relation f(x)-lambdaint0^(pi//2)sinx*costf(t)dt=si...

    Text Solution

    |

  3. f(x) satisfies the relation f(x)-lamda int(0)^(pi//2)sinxcostf(t)dt=si...

    Text Solution

    |

  4. f(x) satisfies the relation f(x)-lambdaint0^(pi//2)sinx*costf(t)dt=si...

    Text Solution

    |

  5. Let f(x) and phi(x) are two continuous function on R satisfying phi(x)...

    Text Solution

    |

  6. Let f(x) and phi(x) are two continuous function on R satisfying phi(x)...

    Text Solution

    |

  7. Let f(x) and phi(x) are two continuous function on R satisfying phi(x)...

    Text Solution

    |

  8. Find the area of a parallelogram whose adjacent sides are given by th...

    Text Solution

    |

  9. Evaluating integrals dependent on a parameter: Differentiate I with ...

    Text Solution

    |

  10. Evaluating integrals dependent on a parameter: Differentiate I with ...

    Text Solution

    |

  11. The value of (dI)/(da) when I=int(0)^(pi//2) log((1+asinx)/(1-asinx)) ...

    Text Solution

    |

  12. Evaluating integrals dependent on a parameter: Differentiate I with ...

    Text Solution

    |

  13. f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The range of f(x) is

    Text Solution

    |

  14. f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt f(x) is not invertibl...

    Text Solution

    |

  15. f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The value of int(0)^(...

    Text Solution

    |

  16. Let u=int0^oo (dx)/(x^4+7x^2+1 and v=int0^oo (x^2dx)/(x^4+7x^2+1) then

    Text Solution

    |

  17. Let u=int0^oo (dx)/(x^4+7x^2+1 and v=int0^x (x^2dx)/(x^4+7x^2+1) then

    Text Solution

    |

  18. If f(x)=int(0)^(1)(dt)/(1+|x-t|),x in R. The value of f'(1//2) is equa...

    Text Solution

    |

  19. If f(x)=int(0)^(1)(dt)/(1+|x-t|),x in R. The value of f'(1//2) is equa...

    Text Solution

    |

  20. Let f be a differentiable function satisfying int(0)^(f(x))f^(-1)(t)d...

    Text Solution

    |