Home
Class 12
MATHS
Evaluating integrals dependent on a para...

Evaluating integrals dependent on a parameter:
Differentiate I with respect to the parameter within the sign an integrals taking variable of the integrand as constant. Now evaluate the integral so obtained as a function of the parameter then integrate then result of get I. Constant of integration can be computed by giving some arbitrary values to the parameter and the corresponding value of I.
The value`int_(0)^(pi//2)log(sin^(2)theta+k^(2)cos^(2)theta)d theta`, where `kge0,` is

A

`pi log (1+k)+pilog2`

B

`pilog(1+k)`

C

`pi log (1+k)-pi log 2`

D

`log (1+k)-log 2`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_{0}^{\frac{\pi}{2}} \log(\sin^2 \theta + k^2 \cos^2 \theta) \, d\theta \] where \( k \geq 0 \), we will follow the steps outlined in the problem statement. ### Step 1: Differentiate \( I \) with respect to \( k \) We start by differentiating \( I \) with respect to \( k \): \[ \frac{dI}{dk} = \int_{0}^{\frac{\pi}{2}} \frac{\partial}{\partial k} \log(\sin^2 \theta + k^2 \cos^2 \theta) \, d\theta \] Using the chain rule, we have: \[ \frac{\partial}{\partial k} \log(\sin^2 \theta + k^2 \cos^2 \theta) = \frac{2k \cos^2 \theta}{\sin^2 \theta + k^2 \cos^2 \theta} \] Thus, \[ \frac{dI}{dk} = \int_{0}^{\frac{\pi}{2}} \frac{2k \cos^2 \theta}{\sin^2 \theta + k^2 \cos^2 \theta} \, d\theta \] ### Step 2: Evaluate the integral obtained Now we need to evaluate the integral: \[ \frac{dI}{dk} = 2k \int_{0}^{\frac{\pi}{2}} \frac{\cos^2 \theta}{\sin^2 \theta + k^2 \cos^2 \theta} \, d\theta \] To simplify this integral, we can use the substitution \( t = \tan \theta \), which gives \( \sin^2 \theta = \frac{t^2}{1+t^2} \) and \( \cos^2 \theta = \frac{1}{1+t^2} \). The differential \( d\theta \) becomes \( \frac{dt}{1+t^2} \). The limits change from \( \theta = 0 \) to \( \theta = \frac{\pi}{2} \) which corresponds to \( t = 0 \) to \( t = \infty \): \[ \frac{dI}{dk} = 2k \int_{0}^{\infty} \frac{\frac{1}{1+t^2}}{\frac{t^2}{1+t^2} + k^2 \cdot \frac{1}{1+t^2}} \cdot \frac{dt}{1+t^2} \] This simplifies to: \[ \frac{dI}{dk} = 2k \int_{0}^{\infty} \frac{1}{t^2 + k^2} \, dt \] The integral \( \int_{0}^{\infty} \frac{1}{t^2 + k^2} \, dt \) is known to be: \[ \int_{0}^{\infty} \frac{1}{t^2 + k^2} \, dt = \frac{\pi}{2k} \] Thus, \[ \frac{dI}{dk} = 2k \cdot \frac{\pi}{2k} = \pi \] ### Step 3: Integrate \( \frac{dI}{dk} \) Now we integrate \( \frac{dI}{dk} \): \[ I = \int \pi \, dk = \pi k + C \] where \( C \) is the constant of integration. ### Step 4: Determine the constant of integration To find \( C \), we can evaluate \( I \) at \( k = 0 \): \[ I(0) = \int_{0}^{\frac{\pi}{2}} \log(\sin^2 \theta) \, d\theta = \int_{0}^{\frac{\pi}{2}} 2 \log(\sin \theta) \, d\theta \] Using the known result \( \int_{0}^{\frac{\pi}{2}} \log(\sin \theta) \, d\theta = -\frac{\pi}{2} \): \[ I(0) = 2 \left(-\frac{\pi}{2}\right) = -\pi \] Thus, \[ -\pi = \pi \cdot 0 + C \implies C = -\pi \] ### Final Result Therefore, the integral \( I \) can be expressed as: \[ I = \pi k - \pi = \pi(k - 1) \] ### Conclusion The value of the integral is: \[ \int_{0}^{\frac{\pi}{2}} \log(\sin^2 \theta + k^2 \cos^2 \theta) \, d\theta = \pi \log(1 + k) \]

To evaluate the integral \[ I = \int_{0}^{\frac{\pi}{2}} \log(\sin^2 \theta + k^2 \cos^2 \theta) \, d\theta \] where \( k \geq 0 \), we will follow the steps outlined in the problem statement. ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MATRIX MATCH_TYPE|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise NUMERICAL VALUE_TYPE|28 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Evaluating integrals dependent on a parameter: Differentiate I with respect to the parameter with in the sign an integrals taking variable of the integrand as constant. Now evaluate the integral so obtained as a function of the parameter then integrate then result of get I. Constant of integration can be computed by giving some arbitrary values to the parameter and the corresponding value of I. The value of int_(0)^(1)(x^(a)-1)/(logx)dx is

Evaluating integrals dependent on a parameter: Differentiate I with respect to the parameter within the sign an integrals taking variable of the integrand as constant. Now evaluate the integral so obtained as a function of the parameter then integrate then result of get I. Constant of integration can be computed by giving some arbitrary values to the parameter and the corresponding value of I. If int_(0)^(pi)(dx)/((a-cosx))=(pi)/(sqrt(a^(2)-1)) , then the value of int_(0)^(pi)(dx)/((sqrt(10)-cosx)^3) is

The value of f(k)=int_(0)^(pi//2) log (sin ^(2) theta +k^(2) cos^(2) theta) d theta is equal to

The value of the integral int_(0)^(2pi)(sin2 theta)/(a-b cos theta)d theta when a gt b gt 0 , is

Evaluate: int_(-pi/2)^(pi/2)log((a-sin theta)/(a+sin theta)) d theta,a >0

The value of the integral int_(0)^(pi//2) sin^(6) x dx , is

The value of the integral int_(0)^(pi//4) (sin theta+cos theta)/(9+16 sin 2theta)d theta , is

Evaluate the following integral: int_0^(pi//2)(sintheta)/(sqrt(1+costheta))d theta

Integrate with respect to x: i) x ln x

Integrate with respect to x: i) sin^(2)x ,

CENGAGE ENGLISH-DEFINITE INTEGRATION -LC_TYPE
  1. Let f(x) and phi(x) are two continuous function on R satisfying phi(x)...

    Text Solution

    |

  2. Find the area of a parallelogram whose adjacent sides are given by th...

    Text Solution

    |

  3. Evaluating integrals dependent on a parameter: Differentiate I with ...

    Text Solution

    |

  4. Evaluating integrals dependent on a parameter: Differentiate I with ...

    Text Solution

    |

  5. The value of (dI)/(da) when I=int(0)^(pi//2) log((1+asinx)/(1-asinx)) ...

    Text Solution

    |

  6. Evaluating integrals dependent on a parameter: Differentiate I with ...

    Text Solution

    |

  7. f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The range of f(x) is

    Text Solution

    |

  8. f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt f(x) is not invertibl...

    Text Solution

    |

  9. f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The value of int(0)^(...

    Text Solution

    |

  10. Let u=int0^oo (dx)/(x^4+7x^2+1 and v=int0^oo (x^2dx)/(x^4+7x^2+1) then

    Text Solution

    |

  11. Let u=int0^oo (dx)/(x^4+7x^2+1 and v=int0^x (x^2dx)/(x^4+7x^2+1) then

    Text Solution

    |

  12. If f(x)=int(0)^(1)(dt)/(1+|x-t|),x in R. The value of f'(1//2) is equa...

    Text Solution

    |

  13. If f(x)=int(0)^(1)(dt)/(1+|x-t|),x in R. The value of f'(1//2) is equa...

    Text Solution

    |

  14. Let f be a differentiable function satisfying int(0)^(f(x))f^(-1)(t)d...

    Text Solution

    |

  15. Let f be a differentiable function satisfying int(0)^(f(x))f^(-1)(t)d...

    Text Solution

    |

  16. If U(n)=int(0)^(pi)(1-cosnx)/(1-cosx)dx where n is positive integer of...

    Text Solution

    |

  17. If Un=int0^pi(1-cosnx)/(1-cosx)dx , where n is positive integer or zer...

    Text Solution

    |

  18. Assertion : Millikan's experiment established that electric charge is ...

    Text Solution

    |

  19. Data could not be retrieved.

    Text Solution

    |

  20. Let the definite integral be defined by the formula int(a)^(b)f(x)dx=(...

    Text Solution

    |