Home
Class 12
MATHS
The value of (dI)/(da) when I=int(0)^(pi...


The value of `(dI)/(da)` when `I=int_(0)^(pi//2) log((1+asinx)/(1-asinx)) (dx)/(sinx)` (where `|a|lt1`) is

A

`(pi)/(sqrt(1-a^(2)))`

B

`-pisqrt(1-a^(2))`

C

`sqrt(1-a^(2))`

D

`(sqrt(1-a^(2)))/(pi)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \(\frac{dI}{da}\) where \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\log\left(\frac{1 + a \sin x}{1 - a \sin x}\right)}{\sin x} \, dx \] for \(|a| < 1\), we will proceed step by step. ### Step 1: Differentiate under the integral sign We start by differentiating \(I\) with respect to \(a\): \[ \frac{dI}{da} = \int_{0}^{\frac{\pi}{2}} \frac{\partial}{\partial a} \left( \frac{\log\left(\frac{1 + a \sin x}{1 - a \sin x}\right)}{\sin x} \right) dx \] ### Step 2: Differentiate the logarithm Using the chain rule, we differentiate the logarithm: \[ \frac{\partial}{\partial a} \log\left(\frac{1 + a \sin x}{1 - a \sin x}\right) = \frac{\sin x}{1 + a \sin x} + \frac{\sin x}{1 - a \sin x} \] Thus, we have: \[ \frac{dI}{da} = \int_{0}^{\frac{\pi}{2}} \frac{1}{\sin x} \left( \frac{\sin x}{1 + a \sin x} + \frac{\sin x}{1 - a \sin x} \right) dx \] ### Step 3: Simplify the expression This simplifies to: \[ \frac{dI}{da} = \int_{0}^{\frac{\pi}{2}} \left( \frac{1}{1 + a \sin x} + \frac{1}{1 - a \sin x} \right) dx \] ### Step 4: Combine the fractions Now, we combine the fractions: \[ \frac{1}{1 + a \sin x} + \frac{1}{1 - a \sin x} = \frac{(1 - a \sin x) + (1 + a \sin x)}{(1 + a \sin x)(1 - a \sin x)} = \frac{2}{1 - a^2 \sin^2 x} \] ### Step 5: Substitute back into the integral Substituting this back into our integral gives: \[ \frac{dI}{da} = \int_{0}^{\frac{\pi}{2}} \frac{2}{1 - a^2 \sin^2 x} \, dx \] ### Step 6: Evaluate the integral The integral can be evaluated using the known result: \[ \int_{0}^{\frac{\pi}{2}} \frac{dx}{1 - k^2 \sin^2 x} = \frac{\pi}{2\sqrt{1-k^2}} \quad \text{for } |k| < 1 \] In our case, \(k^2 = a^2\), so we have: \[ \int_{0}^{\frac{\pi}{2}} \frac{2}{1 - a^2 \sin^2 x} \, dx = 2 \cdot \frac{\pi}{2\sqrt{1-a^2}} = \frac{\pi}{\sqrt{1-a^2}} \] ### Final Result Thus, we find: \[ \frac{dI}{da} = \frac{\pi}{\sqrt{1-a^2}} \]

To find the value of \(\frac{dI}{da}\) where \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\log\left(\frac{1 + a \sin x}{1 - a \sin x}\right)}{\sin x} \, dx \] for \(|a| < 1\), we will proceed step by step. ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MATRIX MATCH_TYPE|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise NUMERICAL VALUE_TYPE|28 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi) x log sinx\ dx

int_(0)^(pi) x log sinx dx

int_0^(pi/2) cosx/(1+sinx)dx

int_(0)^(pi/2) (sinx)/(1+cos^(2)x)dx

int_(0)^(pi)(x)/(1+sinx)dx .

int_0^(pi/4) (1)/(1+sinx)dx

int_0^(pi/4) (1)/(1-sinx)dx

int_(0)^(pi//2)(sinx-cosx)log(sinx+cosx)dx=0

int_0^(pi/2) cosx/sqrt(1+sinx)dx

The value of I=int_(0)^(pi//2) (1)/(1+cosx)dx is

CENGAGE ENGLISH-DEFINITE INTEGRATION -LC_TYPE
  1. Let f(x) and phi(x) are two continuous function on R satisfying phi(x)...

    Text Solution

    |

  2. Find the area of a parallelogram whose adjacent sides are given by th...

    Text Solution

    |

  3. Evaluating integrals dependent on a parameter: Differentiate I with ...

    Text Solution

    |

  4. Evaluating integrals dependent on a parameter: Differentiate I with ...

    Text Solution

    |

  5. The value of (dI)/(da) when I=int(0)^(pi//2) log((1+asinx)/(1-asinx)) ...

    Text Solution

    |

  6. Evaluating integrals dependent on a parameter: Differentiate I with ...

    Text Solution

    |

  7. f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The range of f(x) is

    Text Solution

    |

  8. f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt f(x) is not invertibl...

    Text Solution

    |

  9. f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The value of int(0)^(...

    Text Solution

    |

  10. Let u=int0^oo (dx)/(x^4+7x^2+1 and v=int0^oo (x^2dx)/(x^4+7x^2+1) then

    Text Solution

    |

  11. Let u=int0^oo (dx)/(x^4+7x^2+1 and v=int0^x (x^2dx)/(x^4+7x^2+1) then

    Text Solution

    |

  12. If f(x)=int(0)^(1)(dt)/(1+|x-t|),x in R. The value of f'(1//2) is equa...

    Text Solution

    |

  13. If f(x)=int(0)^(1)(dt)/(1+|x-t|),x in R. The value of f'(1//2) is equa...

    Text Solution

    |

  14. Let f be a differentiable function satisfying int(0)^(f(x))f^(-1)(t)d...

    Text Solution

    |

  15. Let f be a differentiable function satisfying int(0)^(f(x))f^(-1)(t)d...

    Text Solution

    |

  16. If U(n)=int(0)^(pi)(1-cosnx)/(1-cosx)dx where n is positive integer of...

    Text Solution

    |

  17. If Un=int0^pi(1-cosnx)/(1-cosx)dx , where n is positive integer or zer...

    Text Solution

    |

  18. Assertion : Millikan's experiment established that electric charge is ...

    Text Solution

    |

  19. Data could not be retrieved.

    Text Solution

    |

  20. Let the definite integral be defined by the formula int(a)^(b)f(x)dx=(...

    Text Solution

    |