Home
Class 12
MATHS
Evaluating integrals dependent on a para...

Evaluating integrals dependent on a parameter:
Differentiate I with respect to the parameter within the sign an integrals taking variable of the integrand as constant. Now evaluate the integral so obtained as a function of the parameter then integrate then result of get I. Constant of integration can be computed by giving some arbitrary values to the parameter and the corresponding value of I.
If `int_(0)^(pi)(dx)/((a-cosx))=(pi)/(sqrt(a^(2)-1))`, then the value of `int_(0)^(pi)(dx)/((sqrt(10)-cosx)^3)` is

A

(a) `(pi)/81`

B

(b) `(7pi)/162`

C

(c) `(7pi)/81`

D

(d) none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\pi} \frac{dx}{(\sqrt{10} - \cos x)^3} \), we will use the given formula and differentiate with respect to the parameter \( a \). ### Step 1: Start with the given integral formula We know from the problem statement that: \[ \int_{0}^{\pi} \frac{dx}{(a - \cos x)} = \frac{\pi}{\sqrt{a^2 - 1}} \] ### Step 2: Differentiate both sides with respect to \( a \) Differentiating both sides with respect to \( a \): \[ \frac{d}{da} \left( \int_{0}^{\pi} \frac{dx}{(a - \cos x)} \right) = \frac{d}{da} \left( \frac{\pi}{\sqrt{a^2 - 1}} \right) \] Using Leibniz's rule on the left-hand side: \[ \int_{0}^{\pi} \frac{-1}{(a - \cos x)^2} \, dx \] On the right-hand side, using the chain rule: \[ \frac{d}{da} \left( \frac{\pi}{\sqrt{a^2 - 1}} \right) = \frac{\pi \cdot (-\frac{1}{2}) \cdot 2a}{(a^2 - 1)^{3/2}} = \frac{-\pi a}{(a^2 - 1)^{3/2}} \] ### Step 3: Set the differentiated results equal Equating both sides gives: \[ \int_{0}^{\pi} \frac{-1}{(a - \cos x)^2} \, dx = \frac{-\pi a}{(a^2 - 1)^{3/2}} \] ### Step 4: Remove the negative sign Multiplying through by -1: \[ \int_{0}^{\pi} \frac{dx}{(a - \cos x)^2} = \frac{\pi a}{(a^2 - 1)^{3/2}} \] ### Step 5: Differentiate again to find the cube Now, we differentiate again to find: \[ \int_{0}^{\pi} \frac{dx}{(a - \cos x)^3} \] Differentiating the left-hand side: \[ \int_{0}^{\pi} \frac{-1 \cdot (-\sin x)}{(a - \cos x)^3} \, dx = \int_{0}^{\pi} \frac{\sin x}{(a - \cos x)^3} \, dx \] Differentiating the right-hand side: Using the quotient rule: \[ \frac{d}{da} \left( \frac{\pi a}{(a^2 - 1)^{3/2}} \right) = \frac{(a^2 - 1)^{3/2} \cdot \pi - \pi a \cdot \frac{3}{2} (a^2 - 1)^{1/2} \cdot 2a}{(a^2 - 1)^3} \] This simplifies to: \[ \frac{\pi (a^2 - 1)^{3/2} - 3\pi a^2 (a^2 - 1)^{1/2}}{(a^2 - 1)^3} \] ### Step 6: Evaluate the integral for \( a = \sqrt{10} \) Now we substitute \( a = \sqrt{10} \) into the expression we derived for \( \int_{0}^{\pi} \frac{dx}{(a - \cos x)^3} \): \[ \int_{0}^{\pi} \frac{dx}{(\sqrt{10} - \cos x)^3} = \frac{\pi \cdot \sqrt{10} \cdot (10 - 1)^{3/2} - 3\pi \cdot 10 \cdot (10 - 1)^{1/2}}{(10 - 1)^3} \] ### Step 7: Simplify the expression Calculating: \[ = \frac{\pi \cdot \sqrt{10} \cdot 9^{3/2} - 30\pi \cdot 9^{1/2}}{9^3} \] \[ = \frac{\pi \cdot \sqrt{10} \cdot 27 - 30\pi \cdot 3}{729} \] \[ = \frac{\pi (27\sqrt{10} - 90)}{729} \] ### Final Result Thus, the value of the integral is: \[ \int_{0}^{\pi} \frac{dx}{(\sqrt{10} - \cos x)^3} = \frac{7\pi}{162} \]

To solve the integral \( I = \int_{0}^{\pi} \frac{dx}{(\sqrt{10} - \cos x)^3} \), we will use the given formula and differentiate with respect to the parameter \( a \). ### Step 1: Start with the given integral formula We know from the problem statement that: \[ \int_{0}^{\pi} \frac{dx}{(a - \cos x)} = \frac{\pi}{\sqrt{a^2 - 1}} \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MATRIX MATCH_TYPE|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise NUMERICAL VALUE_TYPE|28 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Evaluating integrals dependent on a parameter: Differentiate I with respect to the parameter with in the sign an integrals taking variable of the integrand as constant. Now evaluate the integral so obtained as a function of the parameter then integrate then result of get I. Constant of integration can be computed by giving some arbitrary values to the parameter and the corresponding value of I. The value of int_(0)^(1)(x^(a)-1)/(logx)dx is

Evaluating integrals dependent on a parameter: Differentiate I with respect to the parameter within the sign an integrals taking variable of the integrand as constant. Now evaluate the integral so obtained as a function of the parameter then integrate then result of get I. Constant of integration can be computed by giving some arbitrary values to the parameter and the corresponding value of I. The value int_(0)^(pi//2)log(sin^(2)theta+k^(2)cos^(2)theta)d theta , where kge0, is

The value of the integral int_(0)^(400pi) sqrt(1-cos2x)dx , is

The value of the integral int_(0)^(pi) (1)/(e^(cosx)+1)dx , is

Evaluate the following integral: int_0^(pi//2)(sinx)/(sqrt(1+cosx))dx

Evaluate the integral int_(pi//6)^(pi//3) (dx)/(1+sqrt(tanx))

If the value of the integral I=int_(0)^(1)(dx)/(x+sqrt(1-x^(2))) is equal to (pi)/(k) , then the value of k is equal to

By using the properties of definite integrals, evaluate the integrals int_0^(2pi)cos^5x dx

By using the properties of definite integrals, evaluate the integrals int_(-pi/2)^(pi/2)sin^7x dx

The value of the integral int_(0) ^(pi//2) sin ^3 x dx is :

CENGAGE ENGLISH-DEFINITE INTEGRATION -LC_TYPE
  1. Let f(x) and phi(x) are two continuous function on R satisfying phi(x)...

    Text Solution

    |

  2. Find the area of a parallelogram whose adjacent sides are given by th...

    Text Solution

    |

  3. Evaluating integrals dependent on a parameter: Differentiate I with ...

    Text Solution

    |

  4. Evaluating integrals dependent on a parameter: Differentiate I with ...

    Text Solution

    |

  5. The value of (dI)/(da) when I=int(0)^(pi//2) log((1+asinx)/(1-asinx)) ...

    Text Solution

    |

  6. Evaluating integrals dependent on a parameter: Differentiate I with ...

    Text Solution

    |

  7. f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The range of f(x) is

    Text Solution

    |

  8. f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt f(x) is not invertibl...

    Text Solution

    |

  9. f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The value of int(0)^(...

    Text Solution

    |

  10. Let u=int0^oo (dx)/(x^4+7x^2+1 and v=int0^oo (x^2dx)/(x^4+7x^2+1) then

    Text Solution

    |

  11. Let u=int0^oo (dx)/(x^4+7x^2+1 and v=int0^x (x^2dx)/(x^4+7x^2+1) then

    Text Solution

    |

  12. If f(x)=int(0)^(1)(dt)/(1+|x-t|),x in R. The value of f'(1//2) is equa...

    Text Solution

    |

  13. If f(x)=int(0)^(1)(dt)/(1+|x-t|),x in R. The value of f'(1//2) is equa...

    Text Solution

    |

  14. Let f be a differentiable function satisfying int(0)^(f(x))f^(-1)(t)d...

    Text Solution

    |

  15. Let f be a differentiable function satisfying int(0)^(f(x))f^(-1)(t)d...

    Text Solution

    |

  16. If U(n)=int(0)^(pi)(1-cosnx)/(1-cosx)dx where n is positive integer of...

    Text Solution

    |

  17. If Un=int0^pi(1-cosnx)/(1-cosx)dx , where n is positive integer or zer...

    Text Solution

    |

  18. Assertion : Millikan's experiment established that electric charge is ...

    Text Solution

    |

  19. Data could not be retrieved.

    Text Solution

    |

  20. Let the definite integral be defined by the formula int(a)^(b)f(x)dx=(...

    Text Solution

    |