Home
Class 12
MATHS
f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx...

`f(x)=sinx+int_(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt`
`f(x)` is not invertible for

A

`x epsilon [-(pi)/2-tan^(-1)2,(pi)/2-tan^(-1)2]`

B

`x epsilon[tan^(-1)1/2,pi+"tan"^(-1)1/2]`

C

`x epsilon[pi+cot^(-1)2, 2pi+cot^(-1)2]`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function given by: \[ f(x) = \sin x + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (\sin x + t \cos x) f(t) \, dt \] ### Step 1: Simplify the Integral We can break the integral into two parts: \[ f(x) = \sin x + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin x f(t) \, dt + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} t \cos x f(t) \, dt \] ### Step 2: Factor Out Constants The first integral can be factored since \(\sin x\) is constant with respect to \(t\): \[ f(x) = \sin x \left( 1 + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(t) \, dt \right) + \cos x \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} t f(t) \, dt \] Let: \[ A = 1 + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(t) \, dt \] \[ B = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} t f(t) \, dt \] Thus, we can rewrite \(f(x)\) as: \[ f(x) = A \sin x + B \cos x \] ### Step 3: Find the Constants \(A\) and \(B\) 1. **Finding \(A\)**: Substituting \(f(t) = A \sin t + B \cos t\) into the integral for \(A\): \[ A = 1 + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (A \sin t + B \cos t) \, dt \] The integral of \(\sin t\) over the symmetric interval \([- \frac{\pi}{2}, \frac{\pi}{2}]\) is zero, and the integral of \(\cos t\) is: \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos t \, dt = 2 \] Thus, \[ A = 1 + 0 + 2B \implies A = 1 + 2B \] 2. **Finding \(B\)**: Substituting \(f(t)\) into the integral for \(B\): \[ B = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} t (A \sin t + B \cos t) \, dt \] Again, the integral of \(t \sin t\) over this symmetric interval is zero, and for \(t \cos t\): \[ B = 0 + B \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} t \cos t \, dt \] The integral of \(t \cos t\) can be computed using integration by parts, which results in a non-zero constant. For simplicity, let’s denote this integral as \(C\): \[ B = B \cdot C \] ### Step 4: Solve the System of Equations Now we have two equations: 1. \(A = 1 + 2B\) 2. \(B = B \cdot C\) From the second equation, if \(B \neq 0\), we can divide by \(B\): \[ 1 = C \implies B = 0 \] Substituting \(B = 0\) into the first equation gives: \[ A = 1 \] ### Step 5: Final Form of \(f(x)\) Thus, we have: \[ f(x) = \sin x \] ### Step 6: Determine Non-Invertibility The function \(f(x) = \sin x\) is not invertible in the intervals where it is not one-to-one, specifically: \[ f(x) \text{ is not invertible for } x \in [\frac{\pi}{2} + 2k\pi, \frac{3\pi}{2} + 2k\pi], \text{ where } k \in \mathbb{Z} \] ### Conclusion The function \(f(x)\) is not invertible for the specified intervals. ---

To solve the problem, we need to analyze the function given by: \[ f(x) = \sin x + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (\sin x + t \cos x) f(t) \, dt \] ### Step 1: Simplify the Integral ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MATRIX MATCH_TYPE|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise NUMERICAL VALUE_TYPE|28 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

f(x)=sinx+int_(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The range of f(x) is

f(x)=sinx+int_(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The value of int_(0)^(pi//2) f(x)dx is

Consider a real valued continuous function f such that f(x)=sinx + int_(-pi//2)^(pi//2) (sinx+t(f(t))dt . If M and m are maximum and minimum values of function f , then the value of M//m is____________.

f(x) satisfies the relation f(x)-lamda int_(0)^(pi//2)sinxcostf(t)dt=sinx If f(x)=2 has the least one real root, then

The value of int_(-pi)^(pi) sinx f(cosx)dx is

Find f (x) if f(x)=lambdaint_(0)^(pi//2)sinxcostf(t)dt+sinx where lambda is constant ne 2 .

int_(0)^(pi//2) ( f ( co x )) /( f (sinx ) + f(co sx) ) dx is equal to

f(x) = sinx - sin2x in [0,pi]

If fx=x+sinx , then int_(pi)^(2pi)f^(-1)(x)dx is equal to

If f(x) = int_(0)^(x)(2cos^(2)3t+3sin^(2)3t)dt , f(x+pi) is equal to :

CENGAGE ENGLISH-DEFINITE INTEGRATION -LC_TYPE
  1. Let f(x) and phi(x) are two continuous function on R satisfying phi(x)...

    Text Solution

    |

  2. Find the area of a parallelogram whose adjacent sides are given by th...

    Text Solution

    |

  3. Evaluating integrals dependent on a parameter: Differentiate I with ...

    Text Solution

    |

  4. Evaluating integrals dependent on a parameter: Differentiate I with ...

    Text Solution

    |

  5. The value of (dI)/(da) when I=int(0)^(pi//2) log((1+asinx)/(1-asinx)) ...

    Text Solution

    |

  6. Evaluating integrals dependent on a parameter: Differentiate I with ...

    Text Solution

    |

  7. f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The range of f(x) is

    Text Solution

    |

  8. f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt f(x) is not invertibl...

    Text Solution

    |

  9. f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The value of int(0)^(...

    Text Solution

    |

  10. Let u=int0^oo (dx)/(x^4+7x^2+1 and v=int0^oo (x^2dx)/(x^4+7x^2+1) then

    Text Solution

    |

  11. Let u=int0^oo (dx)/(x^4+7x^2+1 and v=int0^x (x^2dx)/(x^4+7x^2+1) then

    Text Solution

    |

  12. If f(x)=int(0)^(1)(dt)/(1+|x-t|),x in R. The value of f'(1//2) is equa...

    Text Solution

    |

  13. If f(x)=int(0)^(1)(dt)/(1+|x-t|),x in R. The value of f'(1//2) is equa...

    Text Solution

    |

  14. Let f be a differentiable function satisfying int(0)^(f(x))f^(-1)(t)d...

    Text Solution

    |

  15. Let f be a differentiable function satisfying int(0)^(f(x))f^(-1)(t)d...

    Text Solution

    |

  16. If U(n)=int(0)^(pi)(1-cosnx)/(1-cosx)dx where n is positive integer of...

    Text Solution

    |

  17. If Un=int0^pi(1-cosnx)/(1-cosx)dx , where n is positive integer or zer...

    Text Solution

    |

  18. Assertion : Millikan's experiment established that electric charge is ...

    Text Solution

    |

  19. Data could not be retrieved.

    Text Solution

    |

  20. Let the definite integral be defined by the formula int(a)^(b)f(x)dx=(...

    Text Solution

    |