Home
Class 12
MATHS
f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx...

`f(x)=sinx+int_(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt`
The value of `int_(0)^(pi//2) f(x)dx` is

A

`1`

B

`-2`

C

`-1`

D

`2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the integral \( \int_{0}^{\frac{\pi}{2}} f(x) \, dx \) where \[ f(x) = \sin x + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (\sin x + t \cos x) f(t) \, dt. \] ### Step 1: Rewrite the function \( f(x) \) We can express \( f(x) \) as: \[ f(x) = \sin x + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (\sin x + t \cos x) f(t) \, dt. \] This can be simplified to: \[ f(x) = \sin x + \sin x \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(t) \, dt + \cos x \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} t f(t) \, dt. \] Let \( A = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(t) \, dt \) and \( B = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} t f(t) \, dt \). Then we can rewrite \( f(x) \) as: \[ f(x) = \sin x (1 + A) + \cos x B. \] ### Step 2: Determine constants \( A \) and \( B \) 1. **Finding \( A \)**: Substitute \( f(t) = \sin t (1 + A) + \cos t B \) into the integral for \( A \): \[ A = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left( \sin t (1 + A) + \cos t B \right) dt. \] This separates into: \[ A = (1 + A) \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin t \, dt + B \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos t \, dt. \] The integral \( \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin t \, dt = 0 \) and \( \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos t \, dt = 2 \). Thus, \[ A = 0 + 2B \implies A = 2B. \] 2. **Finding \( B \)**: Substitute \( f(t) \) into the integral for \( B \): \[ B = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} t \left( \sin t (1 + A) + \cos t B \right) dt. \] This separates into: \[ B = (1 + A) \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} t \sin t \, dt + B \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} t \cos t \, dt. \] The integral \( \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} t \sin t \, dt = 0 \) (since it is an odd function) and \( \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} t \cos t \, dt \) can be computed using integration by parts, yielding \( 0 \). Thus, \[ B = 0 + 0 \implies B = 0. \] ### Step 3: Substitute back to find \( A \) Since \( B = 0 \), we have: \[ A = 2B = 0. \] ### Step 4: Final form of \( f(x) \) Now substituting \( A \) and \( B \) back into the expression for \( f(x) \): \[ f(x) = \sin x (1 + 0) + \cos x (0) = \sin x. \] ### Step 5: Calculate the integral Now we can compute: \[ \int_{0}^{\frac{\pi}{2}} f(x) \, dx = \int_{0}^{\frac{\pi}{2}} \sin x \, dx. \] The integral of \( \sin x \) is: \[ -\cos x \bigg|_{0}^{\frac{\pi}{2}} = -\left(0 - (-1)\right) = 1. \] ### Conclusion Thus, the value of \( \int_{0}^{\frac{\pi}{2}} f(x) \, dx \) is: \[ \boxed{1}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MATRIX MATCH_TYPE|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise NUMERICAL VALUE_TYPE|28 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

f(x)=sinx+int_(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The range of f(x) is

The value of int_(-pi)^(pi) sinx f(cosx)dx is

f(x)=sinx+int_(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt f(x) is not invertible for

int_(0)^(pi//2)(x)/(sinx+cosx)dx .

int_(0)^(pi//2) x sinx cos x dx=?

Evaluate: int_(-pi//2)^(pi//2)log(sinx+cosx)dx

int _0^(pi/2) (sin^2x)/(sinx+cosx)dx

Evaluate: int_(-pi//2)^(pi//2)|sinx|dx

Let f be a differentiable function satisfying int_(0)^(f(x))f^(-1)(t)dt-int_(0)^(x)(cost-f(t)dt=0 and f((pi)/2)=2/(pi) The value of int_(0)^(pi//2) f(x)dx lies in the interval

int_(0)^(pi/2) (sinx)/(1+cos^(2)x)dx

CENGAGE ENGLISH-DEFINITE INTEGRATION -LC_TYPE
  1. Let f(x) and phi(x) are two continuous function on R satisfying phi(x)...

    Text Solution

    |

  2. Find the area of a parallelogram whose adjacent sides are given by th...

    Text Solution

    |

  3. Evaluating integrals dependent on a parameter: Differentiate I with ...

    Text Solution

    |

  4. Evaluating integrals dependent on a parameter: Differentiate I with ...

    Text Solution

    |

  5. The value of (dI)/(da) when I=int(0)^(pi//2) log((1+asinx)/(1-asinx)) ...

    Text Solution

    |

  6. Evaluating integrals dependent on a parameter: Differentiate I with ...

    Text Solution

    |

  7. f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The range of f(x) is

    Text Solution

    |

  8. f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt f(x) is not invertibl...

    Text Solution

    |

  9. f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The value of int(0)^(...

    Text Solution

    |

  10. Let u=int0^oo (dx)/(x^4+7x^2+1 and v=int0^oo (x^2dx)/(x^4+7x^2+1) then

    Text Solution

    |

  11. Let u=int0^oo (dx)/(x^4+7x^2+1 and v=int0^x (x^2dx)/(x^4+7x^2+1) then

    Text Solution

    |

  12. If f(x)=int(0)^(1)(dt)/(1+|x-t|),x in R. The value of f'(1//2) is equa...

    Text Solution

    |

  13. If f(x)=int(0)^(1)(dt)/(1+|x-t|),x in R. The value of f'(1//2) is equa...

    Text Solution

    |

  14. Let f be a differentiable function satisfying int(0)^(f(x))f^(-1)(t)d...

    Text Solution

    |

  15. Let f be a differentiable function satisfying int(0)^(f(x))f^(-1)(t)d...

    Text Solution

    |

  16. If U(n)=int(0)^(pi)(1-cosnx)/(1-cosx)dx where n is positive integer of...

    Text Solution

    |

  17. If Un=int0^pi(1-cosnx)/(1-cosx)dx , where n is positive integer or zer...

    Text Solution

    |

  18. Assertion : Millikan's experiment established that electric charge is ...

    Text Solution

    |

  19. Data could not be retrieved.

    Text Solution

    |

  20. Let the definite integral be defined by the formula int(a)^(b)f(x)dx=(...

    Text Solution

    |