Home
Class 12
MATHS
Let u=int0^oo (dx)/(x^4+7x^2+1 and v=int...

Let `u=int_0^oo (dx)/(x^4+7x^2+1` and `v=int_0^oo (x^2dx)/(x^4+7x^2+1)` then

A

`pi//3`

B

`pi//6`

C

`pi//12`

D

`pi//9`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the integrals \( u \) and \( v \) defined as: \[ u = \int_0^\infty \frac{dx}{x^4 + 7x^2 + 1} \] \[ v = \int_0^\infty \frac{x^2 \, dx}{x^4 + 7x^2 + 1} \] ### Step 1: Combine the Integrals First, we add the two integrals: \[ u + v = \int_0^\infty \left( \frac{1}{x^4 + 7x^2 + 1} + \frac{x^2}{x^4 + 7x^2 + 1} \right) dx \] This simplifies to: \[ u + v = \int_0^\infty \frac{1 + x^2}{x^4 + 7x^2 + 1} \, dx \] ### Step 2: Factor the Denominator Next, we can factor out \( x^2 \) from the denominator: \[ u + v = \int_0^\infty \frac{1 + x^2}{x^2(x^2 + 7) + 1} \, dx \] ### Step 3: Substitute \( x = \frac{1}{t} \) To simplify the integral, we can use the substitution \( x = \frac{1}{t} \). Then, \( dx = -\frac{1}{t^2} dt \), and the limits change from \( x = 0 \) to \( x = \infty \) to \( t = \infty \) to \( t = 0 \): \[ u + v = \int_\infty^0 \frac{1 + \frac{1}{t^2}}{\frac{1}{t^4} + 7 \frac{1}{t^2} + 1} \left(-\frac{1}{t^2}\right) dt \] Rearranging gives: \[ u + v = \int_0^\infty \frac{t^2 + 1}{1 + 7t^2 + t^4} dt \] ### Step 4: Combine the Integrals Again Now we have: \[ u + v = \int_0^\infty \frac{1 + x^2}{x^4 + 7x^2 + 1} \, dx = \int_0^\infty \frac{1 + \frac{1}{t^2}}{\frac{1}{t^4} + 7 \frac{1}{t^2} + 1} \, dt \] ### Step 5: Evaluate the Integral Next, we can evaluate \( u + v \) using the known result for integrals of this form. The integral evaluates to: \[ u + v = \frac{\pi}{3} \] ### Step 6: Subtract the Integrals Now, we subtract the two integrals: \[ u - v = \int_0^\infty \frac{1 - x^2}{x^4 + 7x^2 + 1} \, dx \] Using the same substitution \( x = \frac{1}{t} \): \[ u - v = \int_0^\infty \frac{1 - \frac{1}{t^2}}{\frac{1}{t^4} + 7 \frac{1}{t^2} + 1} \left(-\frac{1}{t^2}\right) dt \] This simplifies to: \[ u - v = -\int_0^\infty \frac{t^2 - 1}{1 + 7t^2 + t^4} dt \] ### Step 7: Evaluate \( u - v \) This integral can be evaluated, and it turns out that: \[ u - v = 0 \] ### Step 8: Solve for \( u \) and \( v \) From the equations \( u + v = \frac{\pi}{3} \) and \( u - v = 0 \), we can solve for \( u \) and \( v \): Adding the two equations: \[ 2u = \frac{\pi}{3} \implies u = \frac{\pi}{6} \] Subtracting the second from the first: \[ 2v = \frac{\pi}{3} \implies v = \frac{\pi}{6} \] ### Final Result Thus, we have: \[ u = \frac{\pi}{6}, \quad v = \frac{\pi}{6} \]

To solve the given problem, we need to evaluate the integrals \( u \) and \( v \) defined as: \[ u = \int_0^\infty \frac{dx}{x^4 + 7x^2 + 1} \] \[ v = \int_0^\infty \frac{x^2 \, dx}{x^4 + 7x^2 + 1} ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MATRIX MATCH_TYPE|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise NUMERICAL VALUE_TYPE|28 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Let u=int_0^oo (dx)/(x^4+7x^2+1 and v=int_0^x (x^2dx)/(x^4+7x^2+1) then

int_0^4 (2x-1) dx

Evaluate: int_0^oo(dx)/(1+x^2)

int_(0)^(oo)(x^(2)+1)/(x^(4)+7x^(2)+1)dx=

The value of int_0^oo (dx)/(1+x^4) is

Let u=int_0^1("ln"(x+1))/(x^2+1)dx a n d v=int_0^(pi/2)ln(sin2x)dx ,t h e n (a) u=-pi/2ln2 (b) 4u+v=0 (c) u+4v=0 (d) u=pi/8ln2

int((x^2+1))/(x^4+7x^2+1)dx=

int_(0)^(oo)e^(-x^(2))dx=(sqrtpi)/(2) then

1. int_(0)^(oo)e^(-x/2)dx

int_0^4(x^4+3x^2-1)/x^2dx

CENGAGE ENGLISH-DEFINITE INTEGRATION -LC_TYPE
  1. Let f(x) and phi(x) are two continuous function on R satisfying phi(x)...

    Text Solution

    |

  2. Find the area of a parallelogram whose adjacent sides are given by th...

    Text Solution

    |

  3. Evaluating integrals dependent on a parameter: Differentiate I with ...

    Text Solution

    |

  4. Evaluating integrals dependent on a parameter: Differentiate I with ...

    Text Solution

    |

  5. The value of (dI)/(da) when I=int(0)^(pi//2) log((1+asinx)/(1-asinx)) ...

    Text Solution

    |

  6. Evaluating integrals dependent on a parameter: Differentiate I with ...

    Text Solution

    |

  7. f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The range of f(x) is

    Text Solution

    |

  8. f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt f(x) is not invertibl...

    Text Solution

    |

  9. f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The value of int(0)^(...

    Text Solution

    |

  10. Let u=int0^oo (dx)/(x^4+7x^2+1 and v=int0^oo (x^2dx)/(x^4+7x^2+1) then

    Text Solution

    |

  11. Let u=int0^oo (dx)/(x^4+7x^2+1 and v=int0^x (x^2dx)/(x^4+7x^2+1) then

    Text Solution

    |

  12. If f(x)=int(0)^(1)(dt)/(1+|x-t|),x in R. The value of f'(1//2) is equa...

    Text Solution

    |

  13. If f(x)=int(0)^(1)(dt)/(1+|x-t|),x in R. The value of f'(1//2) is equa...

    Text Solution

    |

  14. Let f be a differentiable function satisfying int(0)^(f(x))f^(-1)(t)d...

    Text Solution

    |

  15. Let f be a differentiable function satisfying int(0)^(f(x))f^(-1)(t)d...

    Text Solution

    |

  16. If U(n)=int(0)^(pi)(1-cosnx)/(1-cosx)dx where n is positive integer of...

    Text Solution

    |

  17. If Un=int0^pi(1-cosnx)/(1-cosx)dx , where n is positive integer or zer...

    Text Solution

    |

  18. Assertion : Millikan's experiment established that electric charge is ...

    Text Solution

    |

  19. Data could not be retrieved.

    Text Solution

    |

  20. Let the definite integral be defined by the formula int(a)^(b)f(x)dx=(...

    Text Solution

    |