Home
Class 12
MATHS
If f(x)=int(0)^(1)(dt)/(1+|x-t|),x in R....

If `f(x)=int_(0)^(1)(dt)/(1+|x-t|),x in R`. The value of `f'(1//2)` is equal to

A

`1//2`

B

`0`

C

`1`

D

`2`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( f'(1/2) \) where \[ f(x) = \int_{0}^{1} \frac{dt}{1 + |x - t|}, \] we will follow these steps: ### Step 1: Analyze the Absolute Value The absolute value \( |x - t| \) can be expressed in two cases: - When \( x \geq t \), then \( |x - t| = x - t \). - When \( x < t \), then \( |x - t| = t - x \). ### Step 2: Split the Integral We can split the integral into two parts based on the value of \( x \): \[ f(x) = \int_{0}^{x} \frac{dt}{1 + (x - t)} + \int_{x}^{1} \frac{dt}{1 + (t - x)}. \] ### Step 3: Simplify Each Integral 1. For the first integral: \[ \int_{0}^{x} \frac{dt}{1 + (x - t)} = \int_{0}^{x} \frac{dt}{1 + x - t} = \int_{0}^{x} \frac{dt}{(1 + x) - t}. \] Let \( u = 1 + x - t \), then \( du = -dt \) and the limits change from \( t = 0 \) to \( t = x \) which corresponds to \( u = 1 + x \) to \( u = 1 + x - x = 1 \): \[ = -\int_{1 + x}^{1} \frac{du}{u} = \ln(1 + x) - \ln(1 + x) = \ln\left(\frac{1 + x}{1}\right) = \ln(1 + x). \] 2. For the second integral: \[ \int_{x}^{1} \frac{dt}{1 + (t - x)} = \int_{x}^{1} \frac{dt}{1 + t - x} = \int_{x}^{1} \frac{dt}{(1 - x) + t}. \] Let \( v = (1 - x) + t \), then \( dv = dt \) and the limits change from \( t = x \) to \( t = 1 \) which corresponds to \( v = 1 - x + x = 1 \) to \( v = 1 - x + 1 = 2 - x \): \[ = \int_{1}^{2 - x} \frac{dv}{v} = \ln(2 - x) - \ln(1) = \ln(2 - x). \] ### Step 4: Combine the Results Thus, we can express \( f(x) \) as: \[ f(x) = \ln(1 + x) + \ln(2 - x) = \ln((1 + x)(2 - x)). \] ### Step 5: Differentiate \( f(x) \) Now, we differentiate \( f(x) \): \[ f'(x) = \frac{d}{dx} \ln((1 + x)(2 - x)) = \frac{1}{(1 + x)(2 - x)} \cdot \left( (2 - x) - (1 + x) \right) = \frac{(2 - x) - (1 + x)}{(1 + x)(2 - x)}. \] Simplifying the numerator: \[ = \frac{2 - x - 1 - x}{(1 + x)(2 - x)} = \frac{1 - 2x}{(1 + x)(2 - x)}. \] ### Step 6: Evaluate \( f'(1/2) \) Now, we substitute \( x = \frac{1}{2} \): \[ f'\left(\frac{1}{2}\right) = \frac{1 - 2 \cdot \frac{1}{2}}{(1 + \frac{1}{2})(2 - \frac{1}{2})} = \frac{1 - 1}{(1.5)(1.5)} = \frac{0}{2.25} = 0. \] ### Final Answer Thus, the value of \( f'(1/2) \) is: \[ \boxed{0}. \]

To find the value of \( f'(1/2) \) where \[ f(x) = \int_{0}^{1} \frac{dt}{1 + |x - t|}, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MATRIX MATCH_TYPE|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise NUMERICAL VALUE_TYPE|28 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

If f' is a differentiable function satisfying f(x)=int_(0)^(x)sqrt(1-f^(2)(t))dt+1/2 then the value of f(pi) is equal to

If f(x)=x^(2)int_(0)^(1)f(t)dt+2 , then

If f(x)=x+int_0^1t(x+t)f(t) dt ,then the value of 23/2f(0) is equal to _________

If f(x)=int_0^1(dt)/(1+|x-t|) ,then f^(prime)(1/2) is equal to (a)0 (b) 1/2 (c) 1 (d) none of these

f(x)=int_0^x f(t) dt=x+int_x^1 tf(t)dt, then the value of f(1) is

If int_(0)^(x^(2)(1+x))f(t)dt=x , then the value of f(2) is.

If f(x) is a continuous function such that f(x) gt 0 for all x gt 0 and (f(x))^(2020)=1+int_(0)^(x) f(t) dt , then the value of {f(2020)}^(2019) is equal to

If f (x) =int _(0)^(g(x))(dt)/(sqrt(1+t ^(3))),g (x) = int _(0)^(cos x ) (1+ sint ) ^(2) dt, then the value of f'((pi)/(2)) is equal to:

If f (x) =int _(0)^(g(x))(dt)/(sqrt(1+t ^(3))),g (x) = int _(0)^(cos x ) (1+ sint ) ^(2) dt, then the value of f'((pi)/(2)) is equal to:

CENGAGE ENGLISH-DEFINITE INTEGRATION -LC_TYPE
  1. Let f(x) and phi(x) are two continuous function on R satisfying phi(x)...

    Text Solution

    |

  2. Find the area of a parallelogram whose adjacent sides are given by th...

    Text Solution

    |

  3. Evaluating integrals dependent on a parameter: Differentiate I with ...

    Text Solution

    |

  4. Evaluating integrals dependent on a parameter: Differentiate I with ...

    Text Solution

    |

  5. The value of (dI)/(da) when I=int(0)^(pi//2) log((1+asinx)/(1-asinx)) ...

    Text Solution

    |

  6. Evaluating integrals dependent on a parameter: Differentiate I with ...

    Text Solution

    |

  7. f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The range of f(x) is

    Text Solution

    |

  8. f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt f(x) is not invertibl...

    Text Solution

    |

  9. f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The value of int(0)^(...

    Text Solution

    |

  10. Let u=int0^oo (dx)/(x^4+7x^2+1 and v=int0^oo (x^2dx)/(x^4+7x^2+1) then

    Text Solution

    |

  11. Let u=int0^oo (dx)/(x^4+7x^2+1 and v=int0^x (x^2dx)/(x^4+7x^2+1) then

    Text Solution

    |

  12. If f(x)=int(0)^(1)(dt)/(1+|x-t|),x in R. The value of f'(1//2) is equa...

    Text Solution

    |

  13. If f(x)=int(0)^(1)(dt)/(1+|x-t|),x in R. The value of f'(1//2) is equa...

    Text Solution

    |

  14. Let f be a differentiable function satisfying int(0)^(f(x))f^(-1)(t)d...

    Text Solution

    |

  15. Let f be a differentiable function satisfying int(0)^(f(x))f^(-1)(t)d...

    Text Solution

    |

  16. If U(n)=int(0)^(pi)(1-cosnx)/(1-cosx)dx where n is positive integer of...

    Text Solution

    |

  17. If Un=int0^pi(1-cosnx)/(1-cosx)dx , where n is positive integer or zer...

    Text Solution

    |

  18. Assertion : Millikan's experiment established that electric charge is ...

    Text Solution

    |

  19. Data could not be retrieved.

    Text Solution

    |

  20. Let the definite integral be defined by the formula int(a)^(b)f(x)dx=(...

    Text Solution

    |