Home
Class 12
MATHS
Let f be a differentiable function sati...

Let `f` be a differentiable function satisfying `int_(0)^(f(x))f^(-1)(t)dt-int_(0)^(x)(cost-f(t)dt=0` and `f((pi)/2)=2/(pi)`
The value of `lim_(x to 0)(cosx)/(f(x))` is equal to where [.] denotes greatest integer function

A

`0`

B

`1`

C

`1//2`

D

`2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the reasoning provided in the video transcript. ### Step 1: Given the integral equation We start with the equation: \[ \int_{0}^{f(x)} f^{-1}(t) \, dt - \int_{0}^{x} (\cos t - f(t)) \, dt = 0 \] ### Step 2: Differentiate both sides with respect to \(x\) Using the Fundamental Theorem of Calculus and the chain rule, we differentiate both sides: \[ \frac{d}{dx} \left( \int_{0}^{f(x)} f^{-1}(t) \, dt \right) - \frac{d}{dx} \left( \int_{0}^{x} (\cos t - f(t)) \, dt \right) = 0 \] This gives us: \[ f^{-1}(f(x)) \cdot f'(x) - (\cos x - f(x)) = 0 \] Since \(f^{-1}(f(x)) = x\), we simplify: \[ x f'(x) - \cos x + f(x) = 0 \] ### Step 3: Rearranging the equation Rearranging the equation gives: \[ x f'(x) + f(x) = \cos x \] ### Step 4: Recognizing the derivative We can rewrite the equation as: \[ \frac{d}{dx}(x f(x)) = \cos x \] ### Step 5: Integrate both sides Integrating both sides with respect to \(x\): \[ \int \frac{d}{dx}(x f(x)) \, dx = \int \cos x \, dx \] This results in: \[ x f(x) = \sin x + C \] where \(C\) is a constant. ### Step 6: Solve for \(f(x)\) From the equation, we can express \(f(x)\): \[ f(x) = \frac{\sin x + C}{x} \] ### Step 7: Use the condition \(f\left(\frac{\pi}{2}\right) = \frac{2}{\pi}\) Substituting \(x = \frac{\pi}{2}\): \[ f\left(\frac{\pi}{2}\right) = \frac{\sin\left(\frac{\pi}{2}\right) + C}{\frac{\pi}{2}} = \frac{1 + C}{\frac{\pi}{2}} = \frac{2(1 + C)}{\pi} \] Setting this equal to \(\frac{2}{\pi}\): \[ \frac{2(1 + C)}{\pi} = \frac{2}{\pi} \] This implies: \[ 1 + C = 1 \implies C = 0 \] ### Step 8: Final expression for \(f(x)\) Thus, we have: \[ f(x) = \frac{\sin x}{x} \] ### Step 9: Find the limit Now, we need to evaluate: \[ \lim_{x \to 0} \frac{\cos x}{f(x)} = \lim_{x \to 0} \frac{\cos x}{\frac{\sin x}{x}} = \lim_{x \to 0} \frac{x \cos x}{\sin x} \] Using the limit \(\lim_{x \to 0} \frac{\sin x}{x} = 1\): \[ \lim_{x \to 0} \frac{x \cos x}{\sin x} = \lim_{x \to 0} \cos x \cdot \frac{x}{\sin x} = 1 \cdot 1 = 1 \] ### Step 10: Apply the greatest integer function Finally, since the limit evaluates to \(1\), we apply the greatest integer function: \[ \lfloor 1 \rfloor = 1 \] ### Final Answer The value of \(\lim_{x \to 0} \frac{\cos x}{f(x)}\) is: \[ \boxed{1} \]

To solve the problem step by step, we will follow the reasoning provided in the video transcript. ### Step 1: Given the integral equation We start with the equation: \[ \int_{0}^{f(x)} f^{-1}(t) \, dt - \int_{0}^{x} (\cos t - f(t)) \, dt = 0 \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MATRIX MATCH_TYPE|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise NUMERICAL VALUE_TYPE|28 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

Let f be a differentiable function satisfying int_(0)^(f(x))f^(-1)(t)dt-int_(0)^(x)(cost-f(t)dt=0 and f((pi)/2)=2/(pi) The value of int_(0)^(pi//2) f(x)dx lies in the interval

f(x) = 1 + [cosx]x in 0 leq x leq pi/2 (where [.] denotes greatest integer function) then

Let f:RtoR be a differntiable function satisfying f(x)=x^(2)+3int_(0)^(x)e^(-t^(3)).f(x-t^(3))dt . Then find f(x) .

Let f(x) be a differentiable function satisfying f(x)=int_(0)^(x)e^((2tx-t^(2)))cos(x-t)dt , then find the value of f''(0) .

Let f:RtoR be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . y=f(x) is

Let f(x) be a differentiable function such that f(x)=x^2 +int_0^x e^-t f(x-t) dt then int_0^1 f(x) dx=

Let f:R to R be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . f(x) increases for

If f' is a differentiable function satisfying f(x)=int_(0)^(x)sqrt(1-f^(2)(t))dt+1/2 then the value of f(pi) is equal to

Let f be a differentiable function on R and satisfying the integral equation x int_(0)^(x)f(t)dt-int_(0)^(x)tf(x-t)dt=e^(x)-1 AA x in R . Then f(1) equals to ___

If int_(0)^(x)f(t)dt = x^(2)-int_(0)^(x^(2))(f(t))/(t)dt then find f(1) .

CENGAGE ENGLISH-DEFINITE INTEGRATION -LC_TYPE
  1. Let f(x) and phi(x) are two continuous function on R satisfying phi(x)...

    Text Solution

    |

  2. Find the area of a parallelogram whose adjacent sides are given by th...

    Text Solution

    |

  3. Evaluating integrals dependent on a parameter: Differentiate I with ...

    Text Solution

    |

  4. Evaluating integrals dependent on a parameter: Differentiate I with ...

    Text Solution

    |

  5. The value of (dI)/(da) when I=int(0)^(pi//2) log((1+asinx)/(1-asinx)) ...

    Text Solution

    |

  6. Evaluating integrals dependent on a parameter: Differentiate I with ...

    Text Solution

    |

  7. f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The range of f(x) is

    Text Solution

    |

  8. f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt f(x) is not invertibl...

    Text Solution

    |

  9. f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The value of int(0)^(...

    Text Solution

    |

  10. Let u=int0^oo (dx)/(x^4+7x^2+1 and v=int0^oo (x^2dx)/(x^4+7x^2+1) then

    Text Solution

    |

  11. Let u=int0^oo (dx)/(x^4+7x^2+1 and v=int0^x (x^2dx)/(x^4+7x^2+1) then

    Text Solution

    |

  12. If f(x)=int(0)^(1)(dt)/(1+|x-t|),x in R. The value of f'(1//2) is equa...

    Text Solution

    |

  13. If f(x)=int(0)^(1)(dt)/(1+|x-t|),x in R. The value of f'(1//2) is equa...

    Text Solution

    |

  14. Let f be a differentiable function satisfying int(0)^(f(x))f^(-1)(t)d...

    Text Solution

    |

  15. Let f be a differentiable function satisfying int(0)^(f(x))f^(-1)(t)d...

    Text Solution

    |

  16. If U(n)=int(0)^(pi)(1-cosnx)/(1-cosx)dx where n is positive integer of...

    Text Solution

    |

  17. If Un=int0^pi(1-cosnx)/(1-cosx)dx , where n is positive integer or zer...

    Text Solution

    |

  18. Assertion : Millikan's experiment established that electric charge is ...

    Text Solution

    |

  19. Data could not be retrieved.

    Text Solution

    |

  20. Let the definite integral be defined by the formula int(a)^(b)f(x)dx=(...

    Text Solution

    |