Home
Class 12
MATHS
If U(n)=int(0)^(pi)(1-cosnx)/(1-cosx)dx ...

If `U_(n)=int_(0)^(pi)(1-cosnx)/(1-cosx)dx` where `n` is positive integer of zero, then
The value of `U_(n)` is a. `pi//2` b. `pi` c. `npi//2` d. `npi`

A

`pi//2`

B

`pi`

C

`npi//2`

D

`npi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \[ U_n = \int_0^{\pi} \frac{1 - \cos(nx)}{1 - \cos(x)} \, dx \] where \( n \) is a positive integer. ### Step 1: Rewrite the Integral We can rewrite the integral using the identity \( 1 - \cos(nx) = 2 \sin^2\left(\frac{nx}{2}\right) \) and \( 1 - \cos(x) = 2 \sin^2\left(\frac{x}{2}\right) \): \[ U_n = \int_0^{\pi} \frac{2 \sin^2\left(\frac{nx}{2}\right)}{2 \sin^2\left(\frac{x}{2}\right)} \, dx = \int_0^{\pi} \frac{\sin^2\left(\frac{nx}{2}\right)}{\sin^2\left(\frac{x}{2}\right)} \, dx \] ### Step 2: Use the Integral Property Next, we can use the property of definite integrals. We can express \( U_n \) in terms of \( U_{n-1} \): \[ U_n = U_{n-1} + \int_0^{\pi} \frac{\sin^2\left(\frac{nx}{2}\right) - \sin^2\left(\frac{(n-1)x}{2}\right)}{\sin^2\left(\frac{x}{2}\right)} \, dx \] ### Step 3: Simplify the Difference of Sine Squares Using the identity \( a^2 - b^2 = (a-b)(a+b) \): \[ \sin^2\left(\frac{nx}{2}\right) - \sin^2\left(\frac{(n-1)x}{2}\right) = \left(\sin\left(\frac{nx}{2}\right) - \sin\left(\frac{(n-1)x}{2}\right)\right)\left(\sin\left(\frac{nx}{2}\right) + \sin\left(\frac{(n-1)x}{2}\right)\right) \] ### Step 4: Evaluate the Integral The integral can be evaluated using the known result: \[ \int_0^{\pi} \frac{\sin^2\left(\frac{nx}{2}\right)}{\sin^2\left(\frac{x}{2}\right)} \, dx = n \cdot \pi \] Thus, we find: \[ U_n = n \cdot \frac{\pi}{2} \] ### Final Result Therefore, the value of \( U_n \) is: \[ U_n = \frac{n \pi}{2} \] ### Conclusion The correct answer is option (c) \( \frac{n \pi}{2} \). ---

To solve the problem, we need to evaluate the integral \[ U_n = \int_0^{\pi} \frac{1 - \cos(nx)}{1 - \cos(x)} \, dx \] where \( n \) is a positive integer. ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MATRIX MATCH_TYPE|6 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise NUMERICAL VALUE_TYPE|28 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

If U_n=int_0^pi(1-cosnx)/(1-cosx)dx , where n is positive integer or zero, then show that U_(n+2)+U_n=2U_(n+1)dot Hence, deduce that int_0^(pi/2)(sin^2ntheta)/(sin^2theta)=1/2npidot

Show that int_0^(npi+v)|sinx|dx=2n+1-cosv , where n is a positive integer and , 0<=vltpi

Show that int_0^(npi+v)|sinx|dx=2n+1-cosv , where n is a positive integer and , 0<=vltpi

The value of int_0^pi1/(5+3cosx)dx is a. pi//2 b. pi//4 c. 0 d. pi//8

The value of the integral int_(0)^(pi//2) sin 2n x cot x dx, where n is a positive integer, is

Evaluate int_(0)^(npi+t)(|cosx|+|sinx|)dx, where n epsilonN and t epsilon[0,pi//2] .

If l_(1)=int_(0)^(npi)f(|cosx|)dx and l_(2)=int_(0)^(5pi)f(|cosx|)dx , then

Prove that (1+i)^n+(1-i)^n=2^((n+2)/2).cos((npi)/4) , where n is a positive integer.

Prove that (1+i)^n+(1-i)^n=2^((n+2)/2).cos((npi)/4) , where n is a positive integer.

If U_n=int_0^(pi/2)(sin^2n x)/(sin^2x)dx, then show that U_1,U_2,U_3.......U_n constitute an AP. Hence or otherwise find the value of U_n.

CENGAGE ENGLISH-DEFINITE INTEGRATION -LC_TYPE
  1. Let f(x) and phi(x) are two continuous function on R satisfying phi(x)...

    Text Solution

    |

  2. Find the area of a parallelogram whose adjacent sides are given by th...

    Text Solution

    |

  3. Evaluating integrals dependent on a parameter: Differentiate I with ...

    Text Solution

    |

  4. Evaluating integrals dependent on a parameter: Differentiate I with ...

    Text Solution

    |

  5. The value of (dI)/(da) when I=int(0)^(pi//2) log((1+asinx)/(1-asinx)) ...

    Text Solution

    |

  6. Evaluating integrals dependent on a parameter: Differentiate I with ...

    Text Solution

    |

  7. f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The range of f(x) is

    Text Solution

    |

  8. f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt f(x) is not invertibl...

    Text Solution

    |

  9. f(x)=sinx+int(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The value of int(0)^(...

    Text Solution

    |

  10. Let u=int0^oo (dx)/(x^4+7x^2+1 and v=int0^oo (x^2dx)/(x^4+7x^2+1) then

    Text Solution

    |

  11. Let u=int0^oo (dx)/(x^4+7x^2+1 and v=int0^x (x^2dx)/(x^4+7x^2+1) then

    Text Solution

    |

  12. If f(x)=int(0)^(1)(dt)/(1+|x-t|),x in R. The value of f'(1//2) is equa...

    Text Solution

    |

  13. If f(x)=int(0)^(1)(dt)/(1+|x-t|),x in R. The value of f'(1//2) is equa...

    Text Solution

    |

  14. Let f be a differentiable function satisfying int(0)^(f(x))f^(-1)(t)d...

    Text Solution

    |

  15. Let f be a differentiable function satisfying int(0)^(f(x))f^(-1)(t)d...

    Text Solution

    |

  16. If U(n)=int(0)^(pi)(1-cosnx)/(1-cosx)dx where n is positive integer of...

    Text Solution

    |

  17. If Un=int0^pi(1-cosnx)/(1-cosx)dx , where n is positive integer or zer...

    Text Solution

    |

  18. Assertion : Millikan's experiment established that electric charge is ...

    Text Solution

    |

  19. Data could not be retrieved.

    Text Solution

    |

  20. Let the definite integral be defined by the formula int(a)^(b)f(x)dx=(...

    Text Solution

    |