Home
Class 12
MATHS
A continuous real function f satisfies ...

A continuous real function `f` satisfies `f(2x)=3(f(x)) AA x in R`. If `int_0^1 f(x)dx=1,` then find the value of `int_1^2f(x)dx`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: ### Step 1: Understand the given functional equation We have the functional equation: \[ f(2x) = 3f(x) \] for all \( x \in \mathbb{R} \). ### Step 2: Use the integral condition We know that: \[ \int_0^1 f(x) \, dx = 1 \] ### Step 3: Substitute in the integral We can substitute \( f(2x) \) into the integral: \[ \int_0^1 f(2x) \, dx = \int_0^1 3f(x) \, dx \] This implies: \[ \int_0^1 f(2x) \, dx = 3 \int_0^1 f(x) \, dx = 3 \cdot 1 = 3 \] ### Step 4: Change of variable in the integral Now, we change the variable in the integral \( \int_0^1 f(2x) \, dx \). Let \( t = 2x \), then \( dt = 2dx \) or \( dx = \frac{dt}{2} \). The limits change accordingly: - When \( x = 0 \), \( t = 0 \) - When \( x = 1 \), \( t = 2 \) Thus, we have: \[ \int_0^1 f(2x) \, dx = \int_0^2 f(t) \cdot \frac{1}{2} \, dt = \frac{1}{2} \int_0^2 f(t) \, dt \] ### Step 5: Set up the equation From the previous steps, we have: \[ \frac{1}{2} \int_0^2 f(t) \, dt = 3 \] Multiplying both sides by 2 gives: \[ \int_0^2 f(t) \, dt = 6 \] ### Step 6: Split the integral Now we can split the integral from 0 to 2: \[ \int_0^2 f(t) \, dt = \int_0^1 f(t) \, dt + \int_1^2 f(t) \, dt \] Substituting the known value: \[ 6 = 1 + \int_1^2 f(t) \, dt \] ### Step 7: Solve for the integral from 1 to 2 Rearranging gives: \[ \int_1^2 f(t) \, dt = 6 - 1 = 5 \] ### Conclusion Thus, the value of \( \int_1^2 f(x) \, dx \) is: \[ \boxed{5} \]

To solve the problem, we will follow these steps: ### Step 1: Understand the given functional equation We have the functional equation: \[ f(2x) = 3f(x) \] for all \( x \in \mathbb{R} \). ### Step 2: Use the integral condition ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE MAIN|12 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE ADVANCED|38 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MATRIX MATCH_TYPE|6 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

A continuous real function f satisfies f(2x)=3f(x)AAx in RdotIfint_0^1f(x)dx=1, then find the value of int_1^2f(x)dx

A continuous real function f satisfies f(2x)=3(f(x)AAx in RdotIfint_0^1f(x)dx=1, then find the value of int_1^2f(x)dx

Let f(x) be a function satisying f(x) = f((100)/(x)) AA x ge 0 . If int_(1)^(10) (f(x))/(x) dx = 5 then find the value of int_(1)^(100)(f(x))/(x) dx .

If f(0)=1,f(2)=3,f^'(2)=5 ,then find the value of int_0^1xf^('')(2x)dx

Evaluate: int_(-1)^4f(x)dx=4a n dint_2^4(3-f(x))dx=7, then find the value of int_-1^(2)f(x)dxdot

If f(0)=1,f(2)=3,f'(2)=5 ,then find the value of I_(1)=int_(0)^(1)xf''(2x)dx

Let f: R->R be a continuous function and f(x)=f(2x) is true AAx in R . If f(1)=3, then the value of int_(-1)^1f(f(x))dx is equal to

Evaluate: int_(-1)^4f(x)dx=4a n dint_2^4(3-f(x))dx=7, then find the value of int_2^(-1)f(x)dxdot

If f:RrarrR defined by f(x)=sinx+x , then find the value of int_0^pi(f^-1(x))dx

Let f: R->R be a continuous function and f(x)=f(2x) is true AAx in Rdot If f(1)=3, then the value of int_(-1)^1f(f(x))dx is equal to (a)6 (b) 0 (c) 3f(3) (d) 2f(0)

CENGAGE ENGLISH-DEFINITE INTEGRATION -NUMERICAL VALUE_TYPE
  1. Ift h ev a l u eof("lim")(nvecoo)(n^(-3/2))dotsum(j=1)^(6n)sqrt(j)i se...

    Text Solution

    |

  2. lim(n to oo) n/(2^n)int0^2x^n \ dx equals

    Text Solution

    |

  3. A continuous real function f satisfies f(2x)=3(f(x)) AA x in R. If i...

    Text Solution

    |

  4. Consider the polynomial f(x)=a x^2+b x+cdot If f(0),f(2)=2, then the m...

    Text Solution

    |

  5. If I=int(0)^(3pi//4) ((1+x)sinx+(1-x)cosx)dx, then the value of (sqrt(...

    Text Solution

    |

  6. If int(0)^(100) f(x)dx=7, then sum(r=1)^(100)int(0)^(1)f(r-1+x)dx=.

    Text Solution

    |

  7. The value of int0^((3pi)/2)(|tan^(-1)tanx|-|sin^(-1)sinx|)/(|tan^(-1)t...

    Text Solution

    |

  8. L e tf(x)=x^3=(3x^2)/2+x+1/4 Then the value of (int(1/4)^(3/4)f(f(x))...

    Text Solution

    |

  9. The value of int(0)^(1)(tan^(-1)x)/(cot^(-1)(1-x+x^(2)))dx is.

    Text Solution

    |

  10. Let f(x) be a differentiable function symmetric about x=2, then the va...

    Text Solution

    |

  11. Let f:[0,oo)->R be a continuous strictly increasing function, such tha...

    Text Solution

    |

  12. If f is continuous function and F(x)=int0^x((2t+3). intt^2 f(u)du)\ dt...

    Text Solution

    |

  13. If the value of the definite integral int0^1(sin^(-1)sqrt(x))/(x^2-x+1...

    Text Solution

    |

  14. Let f(x)=int(0)^(x)(dt)/(sqrt(1+t^(3))) and g(x) be the inverse of f(x...

    Text Solution

    |

  15. Let g(x) be differentiable on R and int(sint)^1x^2g(x)dx=(1-sint), wh...

    Text Solution

    |

  16. If int0^oo x^(2n+1)\ e^(-x^2)\ dx=360, then the value of n is

    Text Solution

    |

  17. Let f(x) be a derivable function satisfying f(x)=int0^x e^t sin(x-t) ...

    Text Solution

    |

  18. Let f(x)=1/x^2 int4^x (4t^2-2f'(t))dt then find 9f'(4)

    Text Solution

    |

  19. If the value of the definite integral int0^1^(2007)C7x^(2000)dot(1-x)^...

    Text Solution

    |

  20. IfIn=int0^1(1-x^5)^n dx ,t h e n(55)/7(I(10))/(I(11)) is equal to

    Text Solution

    |