Home
Class 12
MATHS
If I=int(0)^(3pi//4) ((1+x)sinx+(1-x)cos...

If `I=int_(0)^(3pi//4) ((1+x)sinx+(1-x)cosx)dx`, then the value of `(sqrt(2)-1)I` is_______

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{3\pi}{4}} \left( (1+x)\sin x + (1-x)\cos x \right) dx \), we will break it down step by step. ### Step 1: Simplify the Integral We start with the expression inside the integral: \[ I = \int_{0}^{\frac{3\pi}{4}} \left( (1+x)\sin x + (1-x)\cos x \right) dx \] Distributing the terms, we get: \[ I = \int_{0}^{\frac{3\pi}{4}} \left( \sin x + x \sin x + \cos x - x \cos x \right) dx \] This can be separated into two integrals: \[ I = \int_{0}^{\frac{3\pi}{4}} \left( \sin x + \cos x \right) dx + \int_{0}^{\frac{3\pi}{4}} \left( x \sin x - x \cos x \right) dx \] ### Step 2: Evaluate the First Integral Now, we evaluate the first integral: \[ \int_{0}^{\frac{3\pi}{4}} \left( \sin x + \cos x \right) dx \] Calculating this gives: \[ = \left[ -\cos x + \sin x \right]_{0}^{\frac{3\pi}{4}} \] Evaluating the limits: \[ = \left( -\cos\left(\frac{3\pi}{4}\right) + \sin\left(\frac{3\pi}{4}\right) \right) - \left( -\cos(0) + \sin(0) \right) \] Using values: \[ = \left( -\left(-\frac{1}{\sqrt{2}}\right) + \frac{1}{\sqrt{2}} \right) - \left( -1 + 0 \right) \] \[ = \left( \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \right) + 1 = \frac{2}{\sqrt{2}} + 1 = \sqrt{2} + 1 \] ### Step 3: Evaluate the Second Integral Next, we evaluate the second integral: \[ \int_{0}^{\frac{3\pi}{4}} \left( x \sin x - x \cos x \right) dx \] We will use integration by parts. Let: - \( u = x \) and \( dv = \sin x \, dx \) for the first part. - \( u = x \) and \( dv = \cos x \, dx \) for the second part. For \( \int x \sin x \, dx \): \[ du = dx, \quad v = -\cos x \] Using integration by parts: \[ \int x \sin x \, dx = -x \cos x + \int \cos x \, dx = -x \cos x + \sin x \] Evaluating from 0 to \( \frac{3\pi}{4} \): \[ = \left[ -x \cos x + \sin x \right]_{0}^{\frac{3\pi}{4}} \] Calculating: \[ = \left( -\frac{3\pi}{4} \cdot \left(-\frac{1}{\sqrt{2}}\right) + \frac{1}{\sqrt{2}} \right) - \left( 0 + 0 \right) \] \[ = \frac{3\pi}{4\sqrt{2}} + \frac{1}{\sqrt{2}} \] For \( \int x \cos x \, dx \): Using integration by parts similarly: \[ \int x \cos x \, dx = x \sin x - \int \sin x \, dx = x \sin x + \cos x \] Evaluating from 0 to \( \frac{3\pi}{4} \): \[ = \left[ x \sin x + \cos x \right]_{0}^{\frac{3\pi}{4}} \] Calculating: \[ = \left( \frac{3\pi}{4} \cdot \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \right) - (0 + 1) \] \[ = \frac{3\pi}{4\sqrt{2}} - \frac{1}{\sqrt{2}} - 1 \] ### Step 4: Combine Results Now we combine both parts: \[ I = \left( \sqrt{2} + 1 \right) + \left( \frac{3\pi}{4\sqrt{2}} + \frac{1}{\sqrt{2}} - \left( \frac{3\pi}{4\sqrt{2}} - \frac{1}{\sqrt{2}} - 1 \right) \right) \] This simplifies to: \[ I = \sqrt{2} + 1 + 1 \] Thus: \[ I = \sqrt{2} + 2 \] ### Step 5: Calculate \( (\sqrt{2} - 1)I \) Now we find \( (\sqrt{2} - 1)I \): \[ (\sqrt{2} - 1)(\sqrt{2} + 2) = \sqrt{2} \cdot \sqrt{2} + 2\sqrt{2} - \sqrt{2} - 2 \] \[ = 2 + 2\sqrt{2} - \sqrt{2} - 2 = \sqrt{2} \] ### Final Answer The value of \( (\sqrt{2} - 1)I \) is: \[ \sqrt{2} \]

To solve the integral \( I = \int_{0}^{\frac{3\pi}{4}} \left( (1+x)\sin x + (1-x)\cos x \right) dx \), we will break it down step by step. ### Step 1: Simplify the Integral We start with the expression inside the integral: \[ I = \int_{0}^{\frac{3\pi}{4}} \left( (1+x)\sin x + (1-x)\cos x \right) dx \] Distributing the terms, we get: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE MAIN|12 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise JEE ADVANCED|38 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MATRIX MATCH_TYPE|6 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

If I=int_0^((3pi)/4)[(1+x)sinx+(1-x)cosx]dx , then value of (sqrt(2)-1)I is_____

int_(0)^(pi)(x)/(1+sinx)dx .

The value of I=int_(0)^(pi//2) (1)/(1+cosx)dx is

If int_(0)^(4pi)ln|13sinx+3sqrt3cosx|dx=kpiln7 , then the value of k is

Consider the integral I_(n)=int_(0)^((n)/(4))(sin(2n-1)x)/(sinx)dx , then the value of I_(20)-I_(19) is

I=int_(0)^( pi/4)(tan^(-1)x)^(2)/(1+x^2)dx

Evaluate: int_0^(pi/2)(x+sinx)/(1+cosx) dx

Let I_(n)=int_(0)^(pi//2)(sinx+cosx)^(n)dx(nge2) . Then the value of n. I_(n)-2(n-1)I_(n-1) is

int_0^(pi/2) cosx/sqrt(1+sinx)dx

Evaluate int_(pi/3)^(pi/2) e^x((1+sinx)/(1+cosx))dx

CENGAGE ENGLISH-DEFINITE INTEGRATION -NUMERICAL VALUE_TYPE
  1. A continuous real function f satisfies f(2x)=3(f(x)) AA x in R. If i...

    Text Solution

    |

  2. Consider the polynomial f(x)=a x^2+b x+cdot If f(0),f(2)=2, then the m...

    Text Solution

    |

  3. If I=int(0)^(3pi//4) ((1+x)sinx+(1-x)cosx)dx, then the value of (sqrt(...

    Text Solution

    |

  4. If int(0)^(100) f(x)dx=7, then sum(r=1)^(100)int(0)^(1)f(r-1+x)dx=.

    Text Solution

    |

  5. The value of int0^((3pi)/2)(|tan^(-1)tanx|-|sin^(-1)sinx|)/(|tan^(-1)t...

    Text Solution

    |

  6. L e tf(x)=x^3=(3x^2)/2+x+1/4 Then the value of (int(1/4)^(3/4)f(f(x))...

    Text Solution

    |

  7. The value of int(0)^(1)(tan^(-1)x)/(cot^(-1)(1-x+x^(2)))dx is.

    Text Solution

    |

  8. Let f(x) be a differentiable function symmetric about x=2, then the va...

    Text Solution

    |

  9. Let f:[0,oo)->R be a continuous strictly increasing function, such tha...

    Text Solution

    |

  10. If f is continuous function and F(x)=int0^x((2t+3). intt^2 f(u)du)\ dt...

    Text Solution

    |

  11. If the value of the definite integral int0^1(sin^(-1)sqrt(x))/(x^2-x+1...

    Text Solution

    |

  12. Let f(x)=int(0)^(x)(dt)/(sqrt(1+t^(3))) and g(x) be the inverse of f(x...

    Text Solution

    |

  13. Let g(x) be differentiable on R and int(sint)^1x^2g(x)dx=(1-sint), wh...

    Text Solution

    |

  14. If int0^oo x^(2n+1)\ e^(-x^2)\ dx=360, then the value of n is

    Text Solution

    |

  15. Let f(x) be a derivable function satisfying f(x)=int0^x e^t sin(x-t) ...

    Text Solution

    |

  16. Let f(x)=1/x^2 int4^x (4t^2-2f'(t))dt then find 9f'(4)

    Text Solution

    |

  17. If the value of the definite integral int0^1^(2007)C7x^(2000)dot(1-x)^...

    Text Solution

    |

  18. IfIn=int0^1(1-x^5)^n dx ,t h e n(55)/7(I(10))/(I(11)) is equal to

    Text Solution

    |

  19. Evaluate: 5050(int0 1(1-x^(50))^(100)dx)/(int0 1(1-x^(50))^(101)dx)

    Text Solution

    |

  20. L e tJ=int(-5)^(-4)(3-x^2)tan(3-x^2)dx and K=int(-2)^(-1)(6-6x+x^2) t...

    Text Solution

    |